| 研究生: |
黃侯魁 Huang, Hou-Kuei |
|---|---|
| 論文名稱: |
低雜訊磷化銦鎵與砷化鋁鎵假形高速電子移動電晶體在熱電子應力過後影響與溫度特性之研究 Hot-Electron Stresses and Temperature-Dependent Characteristics on Low Noise InGaP and AlGaAs PHEMTs |
| 指導教授: |
王永和
Wang, Yeong-Her 洪茂峰 Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 衝擊離子化 、溫度相依 、最強加速直流應力 、磷化銦鎵 、砷化鋁鎵 、熱電子加速應力 、假形高速電子移動電晶體 |
| 外文關鍵詞: | Low noise PHEMTs, AlGaAs, InGaP, Hot-electron stress, Impact ionization, Temperature-dependent, MSADC |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
良好低雜訊特性的磷化銦鎵/砷化銦鎵/砷化鎵及砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體(PHEMT) 將在本論文中探討,在特性比較上,所使用的PHEMT元件之閘極尺寸分別為0.25×160 µm2 及0.25×300 µm2,用量測直流及高頻低雜訊特性的方式來展示及比較兩種PHEMT的特性。小訊號模型是用0.25×160 µm2 尺寸大小的元件,透過S參數的量測來建立,並使用所建立的小訊號模型來設計低雜訊模組,以驗證小訊號模型,並將此兩種元件加以比較。就比較砷化鋁鎵而言,磷化銦鎵材料在製程及低雜訊特性上的優點也將在此論文中驗示。
在直流與溫度加速應力過後,磷化銦鎵PHEMT元件在直流及雜訊特性上的退化機制,以及在熱電子應力過後,砷化鋁鎵及磷化銦鎵PHEMT元件在直流及雜訊特性上變化的比較,所使用的元件是 MOCVD 所磊晶成長的磷化銦鎵/砷化銦鎵/砷化鎵及砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體結構所做成的,其大小為0.25 × 160 µm2。就雜訊特性而言,其重點元件參數會被討論,而就直流特性而言,在直流與溫度應力過後,電流電壓曲線及二極體特性及空乏區的變化探討,這些是相關於撞擊離子化所造成的陷阱捕捉及陷阱跳離現象。藉由在直流與溫度應力過後,在頻率為12 GHz下所量到很小的低雜訊特性變化來驗證磷化銦鎵PHEMT元件的高穩定度。
就熱電子加速應力對磷化銦鎵或磷化鋁鎵的直流特性影響而言,蕭特基能障特性扮演著極為重要的角色,所以應力前後逆向蕭特基能障特性的研究會在此論文中被探討。
論文中亦會探討兩種元件在不同溫度下的直流與雜訊特性,所使用元件大小是0.25 × 160 µm2,研究的溫度範圍是絕對溫度300K到450K,雜訊特性的量測頻率為12 GHz,直流方面,主要是研究汲極端跟閘極端之間的蕭特基二極體特性與截止電壓對溫度的變化,比較兩種元件雜訊特性對溫度的變化,我們可以再次發現磷化銦鎵元件是比較穩定的。
論文中提出一種直流偏壓,能使熱電子所造成的衝擊離子化現象達到最強的狀態,此直流偏壓稱為 ”最強加速直流應力 MSADC stress”,為加速直流應力研究提供一個新的方式。
最後,我們發現了在不同的加速應力下磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體在應用上較砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體更為穩定。
In this thesis, very high performance InGaP/InGaAs/GaAs and AlGaAs/InGaAs/ GaAs pseudomorphic high electron mobility transistors (PHEMTs) is demonstrated. The gate dimensions of fabricated InGaP and AlGaAs gated PHEMT devices are 0.25×160 µm2 and 0.25×300 µm2. The noise performance of 160 µm and 300 µm gate-width devices are measured. The small signal models are also extrapolated. The low noise modules using InGaP and AlGaAs PHEMTs are designed and manufactured. The comparison of InGaP and AlGaAs PHEMTs is also illustrated.
The degradation mechanisms of the DC characteristics and noise performance after hot-electron (DC accelerated) stresses are investigated. The devices used for investigation were MOCVD-grown In0.49Ga0.51P/In0.15Ga0.85As/GaAs and Al0.25Ga0.75As/In0.15Ga0.85As/ GaAs low noise PHEMT structures with the gate dimensions of 0.25 × 160 µm2. Based on the noise performance, the key noise–effect parameters of devices after DC and thermal stresses are discussed. Based on the DC characteristics with related trapping/detrapping phenomena induced by impact ionization and the variation of depletion in gate-drain region are also investigated. The extreme small variations of minimum noise figure and associated power gain at 12 GHz under DC and thermal stresses are able to demonstrate the high reliability in InGaP low noise PHEMTs.
The influence of the hot-electron stress on DC characteristics of InGaP or AlGaAs PHEMTs is found to be related to the Schottky characteristics. The studies of reverse Schottky characteristics before and after stress are presented.
Furthermore, the temperature-dependent DC characteristics and noise performance of InGaP and AlGaAs PHEMTs with the gate dimensions of 0.25 × 160 µm2 are investigated at 12 GHz with temperatures ranging from 300K to 450K. Comparisons of noise performance including minimum noise figure and associated power gain between InGaP and AlGaAs PHEMTs are also presented.
The best DC bias, termed the Most-Strong Accelerated DC (MSADC) stress condition, for inducing the strongest impact ionization via hot-electron is proposed. This study proposes a new method for determining the strongest hot-electron stress conditions.
Finally, it is found that InGaP/InGaAs/GaAs PHEMTs, after different accelerated stress, are more reliable than AlGaAs/InGaAs/GaAs PHEMTs in device applications.
[1] M. Aust, H. Wang, M. Biedenbender, R. Lai, D. C. Streit, P. H. Liu, G. S. Dow, and B. R. Allen, “A 94-GHz monolithic balanced power amplifier using 0.1μm gate GaAs-based HEMT MMIC production process technology,” IEEE Microwave and Guided Wave Lett., vol. 5, no. 1, pp. 12-14, 1995.
[2] R. Lai, M. Wojtowicz, C. H. Chen, M. Biedenbender, H. C. Yen, D.C. Streit, K. Tan, and P. H. Liu, ”High power 0.15μm V-band pseudomorphic InGaAs-AlGaAs-GaAs HEMT,” IEEE Microwave and Guided Wave Letters, Vol. 3, pp.363-365, 1993.
[3] Y. Itoh, Y. Horrie, K. Nakahara, N. Yoshida, T. Katoh, and T. Takagi, “A V-band, high gain, low noise, monolithic PHEMT amplifier mounted on a small hermetically sealed package,” IEEE Microwave and Guided Wave Lett., vol. 5, no. 2, pp. 48-49, 1995.
[4] T. Henderson, M. Aksun, C. Peng, H. Morkoc, P.C. Chao, P.M. Smith, K.H.G. Duh, and L.F. Lester, “Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs MODFET,” IEEE Electron Device Lett., vol. EDL-7, p. 645, 1986.
[5] M. Golio, and B. Newgard, “The history and future of GaAs devices in commercial wireless products,” BroadBand Communications for the Internet Era Symposium digest, 2001 IEEE Emerging Technologies Symposium on , 2001, pp.63 -69.
[6] R. Dixit, B. Nelson, W. Jones, and J. Carillo, “A family of 2-20 GHz broadband low noise AlGaAs HEMT MMIC amplifiers,” Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1989. Digest of Papers., IEEE 1989, 99.15-19.
[7] P. C. Chao, A. J. Tessmer, K.-H. G. Duh, P. Ho, M.-Y. Kao, P. M. Smith, J. M. Ballingall, S.-M. J. Liu and A. A. Jabra, “W-band low-noise InAlAs/ InGaAs lattice-matched HEMT’s,” IEEE Electron Device Lett., vol. 11, no. 1, pp.59-62, Jan. 1990
[8] Y. C. Chou, D. Leung, R. Lai, R. Grundbacher, M. Barsky, Q. Kan, R. Tsai, M. Wojtowicz, D. Eng, L. Tran, T. Block, P. H. Liu, M. Nishimoto, and A. Oki, “Reliability investigation of 0.07-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel,” IEEE Electron Device Lett., vol. 24, iss. 6, pp.378-380, June 2003.
[9] K. L. Tan, R. M. Dia, D. C. Streit, A. C. Han, T. Q. Trinh, J. R. Velebir, P. H. Liu, T. Lin, H. C. Yen, M. Sholley and L. Shaw, “Ultralow-noise W-band pseudomorphic InGaAs HEMT's,” IEEE Electron Device Lett., vol. 11, no. 11, pp. 303-305, Nov. 1990
[10] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long and D. I. Babic “Determination of valence and conduction-band discontinuities at the (Ga,In) P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, No. 2, pp. 643-649, Feb. 1986
[11] Y. J. Chan and D. Pavlidis, “Trap studies in GaInP/GaAs and AlGaAs/GaAs HEMT's by means of low-frequency noise and transconductance dispersion characterizations,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp. 637-642, May 1994
[12] Y. Okamoto, K. Matsunaga, M. Kuzuhara and M. Kanamori, “Novel InGaP/AlGaAs/InGaAs heterojunction FET for X-Ku band power applications,” IEEE MTT-S Dig., vol. 3, pp. 1191 -1194, 1997
[13] S. Fujita, T. Noda, A. Wagai, C. Nozaki and Y. Ashizawa, "Novel HEMT Structures Using a Strained InGaP Schottky Layer," in Proc. 5th Int. Conf. Indium Phosphide and Related Materials, Paris, France, pp. 497 -500, Apr. 1993.
[14] A. A. Aziz, and M. Missous, “InGaP/InGaAs/GaAs pseudomorphic HEMT grown by solid source MBE,” EDMO, 1996, pp.145 –152
[15] M. Takikawa, and K. Joshin, “Pseudomorphic n-InGaP/InGaAs/GaAs high electron mobility transistors for low-noise amplifiers,” IEEE Electron Device Lett., vol. 14, no. 2, pp. 406-408, 1993.
[16] M. Y. Kao, E. A. Beam, P. Saunier, and W.R. Frensley, “X-band InGaP PHEMTs with 70% power-added efficiency,” 1998 IEEE MTT-S Digest, Int. Vol. 3, pp. 1671-1674.
[17] R. Menozzi, M. Borgarino, P. Cova, Y. Baeyens, M. Van Hove, and F. Fantini, “The effect of hot electron stress on the DC and microwave characteristics of GaAs-PHEMTs and InP-HEMTs,” Reliability Physics Symposium, 1997. 35th Annual Proceedings., IEEE International , 1997, pp.242-247.
[18] H. L. Hartnagel, R. Katilius, and A. Matulionis, “Microwave noise in semiconductor devices,” John Wiley & Sons, 2001, pp.4-7.
[19] C. Canali, P. Cova, E.D. Bortoli, F. Fantini, G. Meneghesso, R. Menozzi, and E. Zanoli, “Enhancement and degradation of drain current in pseudomorphic AlGaAs/InGaAs HEMT’s induced by hot-electron,” in Technical Digest of IEEE IRPS 1995, pp. 205- 211.
[20] Y. A. Tkachenko, C. J. Wei, J. C. M. Hwang, T. D. Harris, R. D. Grober, D. M. Hwang, L. Aucoin, and S. Shanfield, “Hot-electron induced degradation of pseudomorphic high-electron mobility transistors,” IEEE 1995 Microwave and Millimeter-Wave Monolithic Circuits Symp. Proc. Orlando, Florida, 1995, pp. 115-118.
[21] G. Meneghesso, C. Canali, P. Cova, E. De Bortoli and E. Zanoni, “Trapped charge modulation: a new cause of instability in AlGaAs/InGaAs pseudomorphic HEMT’s,” IEEE Electron Dev. Lett. Vol.17, pp. 232-234,1996.
[22] Y. C. Chou, G. P. Li, K. K. Yu, C. S. Wu, Peter Chu, L. D. Hu, and T. A. Midford, “Hot carrier reliability in high power PHEMT’s,” the Technical Digest of IEEE GaAs IC Symposium, Orland, FL,1996, pp. 25-30.
[23] R. Menozzi, “High-field phenomena and reliability issues in microwave heterojunction FETs,” High Performance Electron Devices for Microwave and Optoelectronic Applications, 1999. EDMO. 1999 Symposium on, 22-23 Nov. 1999, pp.75-80.
[24] K. Elgaid, L. Xu, F. Williamson, H. McLelland, S. M. Ferguson, M. C. Holland, S. P. Beaumont, and I. G. Thayne, “Optimisation of DC and RF performance of GaAs HEMT-based Schottky diodes,” Electronics Lett., vol. 35, iss. 19, pp.1678-1679, Sept. 1999.
[25] S. Mil'shtein, P. Ersland, and C. Gil, “Reliability test of MESFETs in presence of hot electrons,” Reliability Physics Symposium Proceedings, 2002. 40th Annual, 7-11 April 2002, pp.230 – 234.
[26] H. K. Huang, Y. H. Wang, C. L. Wu, J. C. Wang, and C. S. Chang, “Super low noise InGaP Gated PHEMT,” IEEE Electron Device Lett., vol. 23, no. 2, pp.70-72, Feb. 2002.
[27] C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T. Anderson, “Impact ionization and light emission in high-power pseudomorphic AlGaAs/InGaAs HEMT’s,” IEEE Trans. on Electron Devices, vol. 40, No. 7, pp. 1211-1214, July 1993.
[28] A. E. Parker, and J. G. Rathmell, “Novel technique for determining bias, temperature and frequency dependence of FET characteristics,” Microwave Symposium Digest, 2002 IEEE MTT-S International , 2002, pp. 993 -996, vol.2.
[29] J. Wurfl, “Recent advances in GaAs devices for use at high temperatures,” High-Temperature Electronic Materials, Devices and Sensors Conference, 1998, pp. 106-116.
[30] M. Feng, D. R. Scherrer, P. J. Apostolakis, and J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25-/spl mu/m gate GaAs MESFETs and GaAs pseudomorphic HEMTs,” IEEE Trans. Electron Dev., vol. 43, iss. 6, pp.852-860, June 1996.
[31] D. V. Morgan, A. Christou, D. Diskett, and G. M. Gauneau, “Thermal stability of heterojunction interfaces in GaAs/AlGaAs structures,” Electronics Lett., vol. 24, iss. 25, pp. 1549-1550, Dec. 1988.
[32] G. Meneghesso, E. De Bortoli, P. Cova, and R. Menozzi, “On temperature and hot electron induced degradation in AlGaAs/InGaAs PM-HEMT's,” High Performance Electron Devices for Microwave and Optoelectronic Applications, 1995. EDMO., IEEE 1995 Workshop on , 27 Nov. 1995, pp.136-141.
[33] K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Dev., vol. 49, iss. 10, pp.1687-1693, Oct. 2002.
[34] P. H. Ladbrooke and S. R. Blight, “Low-field Low-frequency dispersion of transconductance in GaAs MESFET’s with implication for other rate-dependent anomalies,” IEEE Trans. Electron Devices, vol. 35, no. 3, pp. 257-267, 1983.
[35] A. Paccagnella, E. Zanoni, C. Tedesco, C. Lanzieri, and A. Cetronio, “Correlation between surface-state density and impact ionization phenomena in GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 38, No. 12, pp. 2682-2684, Dec.1993.
[36] C. Tedesco, M. Manfredi, A. Paccagnella, E. Zanoni, and C. Canali, “Hot carrier induced photon emission in submicron GaAs devices,” in IEDM Tech. Dig, 1991, pp. 437-440.
[37] H. Willemsen and D. Nicholson,“ GaAs ICs in commercial OC-192 equipment,” IEEE GaAs IC Symp. Tech. Dig., pp. 262-265, 1996.
[38] H. Suehiro, T. Miyata, S. Kuroda, N. Hara, and M. Takikawa, “Highly doped InGaP/InGaAs/GaAs pseudomorphic HEMT's with 0.35 μm gates,” IEEE Trans. Electron Dev., vol. 41, iss. 10, pp.1742-1746, Oct. 1994.
[39] M. Hueschen, N. Moll, E. Gowen, and J. Miller, “Pulse doped MODFETs, in IEEE IEDM Technical Digest,” p.438, San Franciso, CA, (1984).
[40] H. Lee, “Growth of optimization GaAs/(Al,Ga)As modulation-doped heterojunction by MBE for FET’s applications,” Ph.D. Thesis, Cornell University, Ithaca, NY, (1985).
[41] S. Subramanian, “Model for the temperature dependence of the threshold voltage of modulation-doped field-effect transistors,” IEEE Trans. Electron Devices, vol. ED-32, p.865, 1985.
[42] H. L. Stormer, R. Dingle, A.C. Gossard, W. Wiegmann, and M. D. Sturge, “Two-dimensional electron gas at a semiconductor- semiconductor interface,” Solid State Comm., vol. 29, p. 705, 1979.
[43] R. Dingle, H. L. Stormer, A. C. Gossard and W. Wiegmann : “Electron mobility in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys., Lett., vol. 33, p.665, 1978.
[44] M.-Y. Kao, P. M. Smith, P. Ho, P.-C. Chao, K. H. G. Duh, A. A. Jabra, and J. M. Ballingall, “Very High Power-Added Efficiency and Low-Noise 0.15-μm Gate-Length pseudomorphic HEMT’s,” IEEE Electron Device Lett., vol. 10, pp.580-582, 1989.
[45] K. Kasai, and T. Taniguchi, “A study of ion implantation annealing resistance in InGaP/InGaAs/GaAs-epi structure applicable InGaAs-based HFET,” Advanced Thermal Processing of Semiconductors, 2002. RTP 2002. 10th IEEE International Conference of , 25-27 Sept. 2002, pp.147-157.
[46] H. C. Chiu, F. T. Chien, S. C. Yang, C. W. Kuo, and Y. J. Chan, “Reducing source and drain resistances in InGaP/InGaAs doped-channel HFETs using δ-doping Schottky layer,” Electronics Lett., vol. 36, iss. 15, pp.1320-1322, July 2000.
[47] Y. Chen, D. Macintyre, and S. Thoms, “Fabrication of T-shaped gates using UVIII chemically amplified DUV resist and PMMA,” Electronics Lett., vol. 35, iss. 4, pp.338-339, Feb. 1999.
[48] K. Onodera, K. Nishimura, S. Aoyama, S. Sugitani, Y. Yamane, and M. Hirano, “Extremely low-noise performance of GaAs MESFETs with wide-head T-shaped gate,” IEEE Trans. Electron Dev., vol. 46, iss. 2, pp.310-319, Feb. 1999.
[49] M. Nihei, H. Suehiro, and Y. Watanabe, “Anisotropic gate recess dry-etching for InGaP/InGaAs/GaAs HEMTs depending on size of active region,” Electronics Lett., vol. 34, iss. 12, pp.1263-1264, June 1998.
[50] K. Onodera, K. Nishimura, T. Nittono, Y. Yamane, and K. Yamasaki, “V-band amplifier using InGaP/InGaAs/GaAs heterostructure MESFETs with asymmetric Au gate head,” IEEE Microwave and Guided Wave Lett., vol. 8, iss. 10, pp.351-353, Oct. 1998.
[51] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Gate length scaling in high performance InGaP/InGaAs/GaAs pHEMTs,” IEEE Electron Device Lett. Vol. 21, iss. 4, pp.141-143, April 2000.
[52] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance dependence of InGaP/InGaAs/GaAs pHEMTs on gate metallization,” IEEE Electron Device Lett., vol. 20, iss. 11, pp.554-556, Nov. 1999.
[53] Y. C. Chou, R. Lai, G. P. Li, H. Jun, P. Nam, R. Grundbacher, H. K. Kim, Y. Ra, M. Biedenbender, E. Ahlers, M. Barsky, A. Oki, and D. Streit, “Innovative nitride passivated pseudomorphicGaAs HEMTs,” IEEE Electron Device Lett., vol.24, iss. 1, pp.7-9, Jan. 2003.
[54] N. Okamoto, N. Hara, and H. Tanaka, “Surface passivation of InGaP/InGaAs/GaAs pseudomorphic HEMTs with ultrathin GaS film,” IEEE Trans. Electron Dev., vol. 47, iss. 12, pp.2284-2289, Dec. 2000.
[55] J. W. Lee, I. H. Kang, S. J. Kang, S. J. Jo, S. K. In, H. J. Song, J. H. Kim, and J. I. Song, “In0.5Ga0.5P/In0.22Ga0.78As/GaAs pseudomorphic high electron mobility transistor with gate oxide layer for improving on-state and off-state breakdown voltages,” Semiconductor Device Research Symposium, 2001 International , 5-7 Dec. 2001, pp.634-637.
[56] M. Rocchi, “Status of the surface and bulk parasitic effects limiting the performances of GaAs IC’s,” Physica 129B (1985), North-Holland, Amsterdam, pp. 119-138.
[57] A. Thomasian, N. L. Saunders, L. G. Hipwood, A. A. Rezazadeh, “Mechanism of kink effect related to negative photoconductivity in AlGaAs/GaAs HEMT’s,” Electronics Lett., 25th May 1989, vol. 25, No. 11, pp. 738-739.
[58] A. Thomasian, A. A. Rezazadeh, J. K. A. Everard, and L. G. Hipwood, “Experimental evidence for trap-induced photoconductive kink in AlGaAs/GaAs HEMT’s,” Electronics Lett., Vol. 26, No. 14, pp. 1094-1095, July 1990.
[59] K. Inoue, Y. Yamane, K. Shiojima, M. Tokumitsu, F. Hyuga, and K. Yamasaki, “Improvement of breakdown voltage in InGaP/InGaAs/GaAs heterostructure MESFETs for MMICs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1995. Technical Digest 1995., 17th Annual IEEE , 29 Oct.-1 Nov. 1995, pp.97-100.
[60] S. Mil'shtein, P. Ersland, C. Gil, and S. Somisetty, “Reliability characteristics of pHEMT resulting from electron interaction with interface states under the gate,” IEEE Proc 41st Int Reliability Physics Symp, April 2003, pp.329-31.
[61] M. Tomaska, T. Lalinsky, M. Krnac, M. Klasovity, Z. Mozolova, S. Hascik, and I. Kostic, “Micromachined coplanar waveguide on GaAs based HFET heterostructures,” Microwaves, Radar and Wireless Communications, 2002. MIKON-2002. 14th International Conference on , Volume: 3 , 20-22 May 2002, pp.825-828 vol.3.
[62] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, Accurate, “small-signal modeling of HFET’s for millimeter-wave applications,” IEEE Trans Microwave Theory Tech 44, pp. 432-437, 1996.
[63] W. Shangli, and A. F. M. Anwar, “A theoretical determination of impact ionization induced gate current in InP HEMTs,” High Performance Devices, 2000. Proceedings. 2000 IEEE/Cornell Conference on , 2000, pp.135-139.
[64] B. Lambert, N. Malbert, A. Touboul, and P. Huguet, “Influence of impact ionization stresses on AlGaAs-InGaAs HEMT performances,” Physical and Failure Analysis of Integrated Circuits, 2001. IPFA 2001. Proceedings of the 2001 8th International Symposium, pp.238-242.
[65] R. Menozzi, P. Cova, C. Canali, and F. Fantini, “Breakdown walkout in pseudomorohic HEMT’s,” IEEE Trans Electron Devices, vol. 43, no.4, pp. 543-546, 1996.
[66] P. C. Chao, M. Shur, M. Y. Kao, and B. R. Lee, “Breakdown walkout in AlGaAs/GaAs HEMT’s,” IEEE Trans. Electron Devices, vol. 39, No. 3, pp. 738-740, 1992.
[67] B. Lambert, N. Malbert, N. Labat, A. Touboul, and P. Huguet, “Breakdown voltage of AlGaAs/InGaAs HEMT submitted to life-tests in impact ionization regime,” GaAs Reliability Workshop, 2000. Proceedings, 2000, pp.3-19.
[68] K. W. Lee, K. Lee, M. S. Shur, T. T. Vu, P. C. T. Roberts, and M. J. Helix, “Source, drain, and gate series resistances and electron saturation velocity in ion-implanted GaAs FET’s,” IEEE Trans. Electron Devices, vol. ED-32, pp. 987-992, 1985.
[69] A. Thomasian, A. A. Rezazadeh, and L. G. Hipwood, “Observation and mechanism of kink effect in depletion-mode AlGaAs/GaAs and AlGaAs/GaInAs HEMTs,” Electronics Lett., 2nd Mar 1989, vol. 25, No. 5, pp. 351-353.
[70] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proceedings of the IEEE, Vol 90, iss. 6, pp.1048-1058, June 2002.
[71] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in wide-bandgap microwave FETs,” Microwave Symposium Digest, 2002 IEEE MTT-S International , Vol. 3, 2002, pp.1823-1826.
[72] S. Takatani, H. Matsumoto, J. Shigeta, K. Ohshika, T. Yamashita, and M. Fukui, “Generation mechanism of gate leakage current due to reverse-voltage stress in i-AlGaAs/n-GaAs HIGFETs,” IEEE Trans. Electron Dev., vol. 45, iss. 1, pp.14-20, Jan. 1998.
[73] R. E. Kasody, G. S. Dow, A. K. Sharma, M. V. Aust, D. Yamauchi, R. Lai, M. Biedenbender, K. L.Tan, and B. R. Allen,” A High Efficiency V-Band Monolithic HEMT Power Amplifier,” IEEE Microwave and Guided Wave LETT., Vol, 4, No. 9, pp. 303-304, 1994.
[74] K. J. Schoen, J. M. Woodall, J. A. Cooper, and M. R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Trans. Electron Devices, vol. 45, pp. 1595-1604, 1998.
[75] D. A. Neamen, “Semiconductor Physics & Devices,” McGraw-Hill, Second Edition, 1997.
[76] K. J. Schoen, J. M. Woodall, J. A. Cooper, and M. R. Melloch, “Design consideration and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Trans. Electron Devices, vol. 45, pp. 1595-1604, July 1998.
[77] S. M. Sze, “Physics of semiconductor devices,” New York: Willy, 1981.
[78] S. M. Sze, “High-speed semiconductor devices,” John Wiley & Sons, 1990, pp.231-232.
[79] H. Fukui, “Optimal noise figure of microwave GaAs MESFETs,” IEEE Trans. Electron Devices, vol. ED-26, p. 1032, 1979.
[80] M. T. Hutabarat, D. R. Webster, and D. G. Haigh, “Variation of pinch-off modulation with drain bias in MESFETs and HEMTs,” Electronics Lett., vol. 35, iss. 9, pp.755-756, April 1999.
[81] J. B. Kuang, P. J. Tasker, G. W. Wang, Y. K. Chen, L. F. Eastman, O. A. Aina, H. Hier, and A. Fathimulla, “Kink effect in submicrometer-gate MBE-grown InAlAs/InGaAs/InAlAs heterojunction MESFET’s,” IEEE Electron Device Lett., vol. 9, pp. 630-632, Dec. 1988.
[82] A. Piotrowska, A Guivarc’h and G. Pelous, “Ohmic Contacts to Ⅲ-ⅤCompound Semiconductors:A Review of Fabrication Techniques,” Solid State Electronics, 26(3), pp. 179-197, 1983.
[83] R. Anholt, “Electrical and Thermal Characterization of MESFET’s, HEMT’s, and HBT’s,” Artech House, 1994, pp.166-167.
[84] F. S. Shoucair and P. K. Ojala, “High-temperature electrical characteristics of GaAs MESFET’s (25-400℃),” IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1551-1557, Jul. 1992.
[85] K. Weigel, M. Warth, K. Hirche, and K. Heime, “Degradation effects and stabilization of InAlAs/InGaAs-HFETs,” in Indium Phosphide and Related Materials, 1996. IPRM '96., Eighth International Conference on, 1996, pp. 662-665.
[86] M. Borgarino, R. Menozzi, Y. Baeyens, P. Cova, and F. Fantini,” Hot electron degradation of the DC and RF characteristics of AlGaAs/InGaAs/GaAs PHEMT’s,” IEEE Trans. Electron Devices, vol. 45, No. 2, pp. 366-372, 1998.
[87] C. S. Wang, H. K. Huang, Y. H. Wang,C. L. Wu, and C. S. Chang,” High reliability in low noise InGaP gated PHEMTs,” IEEE 2002 GaAs IC Symp., pp. 81-84, 2002.
[88] S. F. Yoon, K. H. Yip, H. Q. Zheng, and B. P. Gay, “A comparison of deep level effects on the DC characteristics of In xGa1-xP/In0.20Ga0.80As/GaAs and Al0.24Ga0.76As/In0.20Ga0.80 As/GaAs high electron mobility transistors grown by solid source MBE,” Indium Phosphide and Related Materials, 2001. IPRM. IEEE International Conference On , 14-18 May 2001, pp.338-341.
[89] Y. C. Chou, D. Leung, R. Grundbacher, R. Lai, P. H. Liu, Q. Kan, M. Biedenbender, D. Eng, and A. Oki, “The Effect of Gate Metal Interdiffusion on Reliability Performance in GaAs PHEMTs,” IEEE Electron Device Lett., vol. 25, Iss. 6, pp.351-353, June 2004.
[90] Y. C. Chou, R. Grundbacher, D. Leung, R. Lai, P.H. Liu, Q. Kan, M. Biedenbender, M. Wojtowicz, D. Eng, and A. Oki, “Physical identification of gate metal interdiffusion in GaAs PHEMTs,” IEEE Electron Device Lett., vol. 25, Iss. 2, pp.64-66, Feb. 2004.
[91] V. Kaper, F. Gao, and P. Ersland, “2-D device numerical simulations of gate sinking failure mechanism in pHEMT,” GaAs Reliability Workshop, 1998. Proceedings, 1998, pp.63 -68.
[92] T. Ishikawa, K. Okaniwa, M. Komaru, K. Kosaki, and Y. Mitsui, “A high-power GaAs FET having buried plated heat sink for high-performance MMIC's,” IEEE Tran. Electron Dev., vol 41, iss. 1, pp3-9, Jan. 1994.
[93] C. H. Chen, G. Zell, Y. Saito, H. C. Yen, R. Lai, T. Kin, and J. Loper, “RF-stressed life test of pseudomorphic InGaAs power HEMT MMIC at 44 GHz,” Microwave Symposium Digest, 1995., IEEE MTT-S International, 1995, pp.713-716 vol.2.
[94] Y. Saito, W. Jones, C. J. Lizandro, K. Mai, C. Perry, J. Wiltz, S. Claxton, R. Esfandiari, and E. Rezek, “Reliability testing of state-of-the-art PM HEMT MMICs three-stage low-noise amplifier,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1992. Technical Digest 1992., 14th Annual IEEE, pp.153 -156.
[95] Y. C. Chou, G. P. Li, D. Leung, Z. Y. Wang, Y. C. Chen, R. Lai, C. S. Wu, R. Kono, P. H. Liu, J. Scarpulla, and D. C. Streit, “Degradation effects induced by hot carrier and high channel temperature in pseudomorphic GaAs millimeter wave power HEMT's,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997. Technical Digest 1997., 19th Annual , 1997, pp.165-168.
[96] F. Fantini, L. Cattani, and D. Dieci, “Reliability of compound semiconductor devices,” Microelectronics, 2000. Proceedings. 2000 22nd International Conference on, vol. 1, pp.299-310.
[97] E. Lan, E. Johnson, B. Knappenberger, and M. Miller, “InGaP PHEMTs for 3.5GHz W-CDMA applications,” Microwave Symposium Digest, 2002 IEEE MTT-S International , Volume: 2 , 2-7 June 2002, pp.1039-1042.
[98] Y. Kawasaki, K. Shirakawa, Y. Ohashi, T. Saito, “60-GHz monolithic oscillator using InGaP/InGaAs/GaAs HEMT technology,” Microwave Symposium Digest, 1995., IEEE MTT-S International , 16-20 May 1995, pp.541-544 vol.2.
[99] S. Sugitani, Y. Yamane, T. Nittono, H. Yamazaki, K. Nishimura, and K. Yamasaki, “Self-aligned InGaP/InGaAs/GaAs heterostructure MESFET technology for analog-digital hybrid type ICs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1994. Technical Digest 1994., 16th Annual , 16-19 Oct. 1994, pp.123- 126.
[100] H. Suehiro, M. Shima, T. Shimura, and N. Hara, “Subfemtojoule 0.15 μm InGaP/InGaAs/GaAs pseudomorphic HEMT DCFL circuits under 1 V supply voltage,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1996. Technical Digest 1996., 18th Annual , 3-6 Nov. 1996, pp.77-80.
[101] S. Kuroda, H. Suehiro, T. Miyata, S. Asai, I. Hanyu, M. Shima, N. Hara, and M. Takikawa, “0.25 μm gate length N-InGaP/InGaAs/GaAs HEMT DCFL circuit with lower power dissipation than high-speed Si CMOS circuits,” Electron Devices Meeting, 1992. Technical Digest., International , 13-16 Dec. 1992, pp.323-326.
[102] M. Chertouk, S. Burkner, K. Bachem, W. Pletschen, S. Kraus, J. Braunstein, and G. Trankle, “Advantages of Al-free GaInP/InGaAs PHEMTs for power applications,” Electronics Lett., vol. 34, iss. 6, pp.590-592, March 1998.
[103] A. Mazzanti, G. Verzellesi, G. Sozzi, R. Menozzi, C. Lanzieri, and C. Canali, “Physical investigation of trap-related effects in power HFETs and their reliability implications,” IEEE Trans. Device and Materials Rel., vol. 2, iss. 3, pp.65-71, Sept. 2002.
[104] D. Dieci, G. Sozzi, R. Menozzi, E. Tediosi, C. Lanzieri, and C. Canali, “Electric-field-related reliability of AlGaAs/GaAs power HFETs: bias dependence and correlation with breakdown,” IEEE Trans. Electron Dev., vol. 48, iss. 9, pp.1929-1937, Sept. 2001.
[105] D. Dieci, R. Menozzi, C. Lanzieri, L. Polenta, and C. Canali, ”Hot electron effects on Al0.25Ga0.75As/GaAs power HFET's under off-state and on-state electrical stress conditions,” IEEE Trans. Electron Dev., vol. 47, iss. 2, pp.261-268, Feb. 2000.
[106] E. Lan, B. Pitts, M. Mikhov, and O. Hartin, “InGaP PHEMTs for wireless power applications”, Microwave Symposium Digest, 2001 IEEE MTT-S International , Volume: 3 , 20-25 May 2001, pp.2155-2157 vol.3.