簡易檢索 / 詳目顯示

研究生: 單子睿
Shan, Tzu-Ray
論文名稱: 壓電式噴墨系統之液滴型態控制研究及其數值模擬
Droplet Control of a Piezoelectric Inkjet Device and Its Simulation
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 135
中文關鍵詞: MicroFab噴射微液滴壓電式噴液
外文關鍵詞: MicroFab, piezoelectric inkjet, micro-droplet, injection
相關次數: 點閱:101下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 起源於噴墨印表機噴印技術的微液珠噴射技術,因可以應用在電路基板配線、彩色濾光片、微泵浦燃油噴射、奈米尺度之超精密加工、以及生醫工程等方面,而受到極大的注目。
    本論文以一套壓電式噴液設備,進行去離子水及乙二醇液體的液滴噴射實驗,觀察並探討操作頻率、脈衝時間、脈衝電壓、脈衝型態以及噴射液體等實驗參數,對液滴噴射之情形、液滴之形成機制及液滴飛行之情況。以求找到最佳的液滴型態,即愈小的液滴體積、愈小的附屬液滴、無二次液滴、愈快的飛行速度、愈大的操作頻率,以及能得到最佳液滴型態之液滴噴射條件。同時以一套針對壓電式微液珠噴射技術所建立的3-D模擬系統,模擬去離子水及乙二醇液滴之液滴噴射。
    在液滴的噴射實驗中,木論文找出實驗參數對液滴噴射之影響,並得到兩種液滴噴射的最佳條件。並將3-D模擬系統模擬之結果,與實驗進行比對,以驗證此模擬系統的準確性。

    Micro-droplet injection technology, originated from inkjet printer’s inkjet technology, was paid to a lot of attention because of its great ability to wide application, such as IC interconnect, color filters, micro fuel pump, nano-scale working, and Bio-medical aspects.
    This thesis observed and studied the influence of operation frequency, pulse time, pulse voltage, pulse type and injection fluid to droplet injection, droplet dynamics, and droplet aviation by a piezoelectric inkjet device injecting DI water and ethylene glycol. This thesis looked for the best droplet form, that is, smaller the droplet volume, smaller the satellite droplets, no second droplets, faster the droplet speed, and higher the operation frequency, and the conditions to acquire best droplet form. This thesis also simulated the droplet injection of DI water and ethylene glycol by a 3-dimensional simulation system.
    With the droplet injection experiments, this thesis obtained the influence of experiment parameters to droplet injection. This thesis also obtained the conditions to acquire best droplet form. 3-D simulation results was also compared with experiment results, to verify its accuracy.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 IX 圖目錄 X 第一章 序論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 微液珠噴射技術之應用 3 1-3-1 電路基板配線 3 1-3-2彩色濾光片 4 1-3-3光電方面的應用 4 1-3-4微泵浦燃油噴射 4 1-3-5奈米尺度之超精密加工 4 1-3-6生醫方面的應用 5 1-4 研究目的與內容 5 第二章 實驗原理 7 2-1 實驗原理 7 2-1-1 自控式噴射模式與連續式噴射模式 7 2-1-2 壓電式與熱泡式噴頭 9 2-1-3 擠壓式壓電噴頭之噴射原理 11 2-1-4擠壓式壓電噴頭之波傳導理論 12 2-2 噴墨相關現象 15 2-2-1 液滴生成 16 2-2-2 液滴斷裂 16 2-2-3 附屬液滴的生成 16 第三章 數值方法 31 3-1 模擬系統之建立 31 3-1-1 幾何模型的建立 31 3-1-2 網格系統的建立 31 3-1-3 模擬所需條件之設定與輸入 31 3-2 數學模式 32 3-2-1 系統之簡化與假設 32 3-2-2 流體流動之控制方程式 32 3-2-3 氣、液兩相之處理 33 3-2-4 表面張力之處理 34 第四章 研究方法 40 4-1 實驗設備及方法 40 4-1-1 實驗設備簡介 40 4-1-2 實驗液體 41 4-1-3 單脈衝與雙脈衝電壓型態 42 4-1-4 脈衝控制器的限制 44 4-2 實驗參數的表示與設定 45 4-2-1 實驗參數的表示方法 45 4-2-2 實驗參數的設定:操作頻率 45 4-2-3 實驗參數的設定:脈衝時間 46 4-2-4 實驗參數的設定:脈衝電壓 47 4-3 模擬參數的表示與設定 47 4-3-1 模擬參數的表示方法 47 4-3-2 模擬參數的設定:最大正壓力 48 4-3-3 模擬參數的設定:衰減因子 48 4-3-4 模擬參數的設定:黏滯係數 49 4-3-5 模擬參數的設定:表面張力 49 4-4 最佳的液滴噴射型態 50 第五章 結果與討論 62 5-1實驗部份 62 5-1-1 操作頻率對液滴噴射型態之影響 62 5-1-1-1 單脈衝型態之液滴噴射結果 62 5-1-1-2 雙脈衝型態之液滴噴射結果 63 5-1-1-3 操作頻率對液滴噴射型態影響之討論 64 5-1-2 脈衝時間對液滴噴射型態之影響 65 5-1-2-1 單脈衝型態之液滴噴射結果 65 5-1-2-2 雙脈衝型態之液滴噴射結果 67 5-1-2-3 脈衝時間對液滴噴射型態影響之討論 68 5-1-3 脈衝電壓對液滴噴射型態之影響 69 5-1-3-1 單脈衝型態之水液滴噴射結果 69 5-1-3-2單脈衝型態之乙二醇液滴噴射結果 72 5-1-3-3 雙脈衝型態之水液滴噴射結果 74 5-1-3-4雙脈衝型態之乙二醇液滴噴射結果 76 5-1-3-5 脈衝電壓對液滴噴射型態影響之討論 79 5-1-3-6 脈衝型態對液滴噴射型態影響之討論 80 5-1-3-7 噴射液體對對液滴噴射型態影響之討論 81 5-1-4 最佳噴射條件 82 5-2水及乙二醇液滴噴射之模擬 83 第六章 結論 122 第七章 未來研究方向 124 參考文獻 125 附錄A 壓力波分裂之數學描述 127 附錄B 壓力波反彈之數學描述 129 附錄C 連續方程式與動量方程式之差分式 131 附錄D 噴墨設備操作方法 133 自述 135

    1. W.L. Buehner, J.D. Hill, T.H. Williams, and J.W. Woods, “Application of Ink Jet Technology to a Word Processing Output Printer”, IBM J. Res. Develop., Vol.21, No. 1, pp. 2-9, Jan., 1977.
    2. L. Rayleigh, “On the Instability of Jets”,Proc. London Math Soc., Vol. 10, no.4, 1878.
    3. L. Rayleigh, “On the Instability of a Cylinder of Viscous Liquid Under Capillary Force”, Phil. Mag., Vol.34, no. 145, 1892.
    4. R.G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink Jets”, Stanford Electronics Laboratories Technical Report, No. 1722-1, Stanford University, CA, 1964.
    5. A.M. Lewis, and A.D. Brown, “Electrically Operated Character Printer”, U.S. Patent 3,298,030, 1967.
    6. W.T. Pimbley, and H.C. Lee, “Satellite Droplet Formation in a Liquid Jet”, IBM J. Res. Develop., Vol.21, No. 1, pp. 56-68, Jan., 1977.
    7. R.D. Hansell, U.S. Patent 2,512,743, 1950.
    8. J.D. Beasley, “Model for Fluid Ejection and Refill of an Impulse Drive Jet”, J. Appl. Photogr. Eng., 3, 78-82, 1977.
    9. N. Bugdayci, D.B. Bogy, and F.E. Talke, “Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders used in Ink Jet Printing”, IBM J. Res. Develop., Vol. 27, No. 2, pp. 171-180, March, 1983.
    10. T.W. Shield, D.B. Bogy, and F.E. Talke, “Drop Formation by DOD in Inkjet Nozzles: A Comparison of Experiment and Numerical Simulation”, IBM J. Res. Develop., Vol. 31, No. 1, Jan. 1987.
    11. 莊育洪譯, “噴墨技術可突破機器小型化的限制,” 日經Electronics, no. 824, pp.67-78, June 2002.
    12. 光學工程季刊75期,Sep.2001,-「噴墨法彩色濾光片可行性分析研究」,pp.11-15
    13. D.J. Hayes, W.R. Cox, and D.B. Wallace, “Printing System for MEMS Packaging”, Proc., SPIE Conference on Micromachining and Microfabrication, October, 2001.
    14. W.R. Cox, T. Chen, D. Ussery, D.J. Hayes, J.A. Tatum, and D.L. MacFarlane, “Microjetted lenslet-tipped fibers”, Optics Communications, 123, pp. 492-496, 1996.
    15. P. Cooley, D. Wallace, B. Antohe, and MicroFab Technologies, Inc., “Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems”, Proc., SPIE Conference on Microfluidics and BioMEMS, October, 2001.
    16. J. Kimura, Y. Kawana, and T. Kuriyama, “An Immobilized Membrane Fabrication Method Using an Inkjet Nozzle,” Biosensors, 4, pp.41-52, 1988.
    17. D.B. Bogy, and F.E.Talke. “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Inkjet Devices”, IBM J. Res. Develop.,Vol. 28, No.3, 1984.
    18. MicroFab Technologies, Inc., http://www.microfab.com
    19. J. A. Dean, Lange’s Handbook of Chemistry 15th Edition, 1972, McGraw-Hill, Inc.

    下載圖示 校內:立即公開
    校外:2003-07-22公開
    QR CODE