| 研究生: |
張簡士琨 Changchien, Shih-Kuen |
|---|---|
| 論文名稱: |
新型高昇壓比直流-直流功率轉換器設計 Design of Novel High Step-Up Ratio DC-DC Power Converters |
| 指導教授: |
梁從主
Liang, Tsorng-Juu 陳建富 Chen, Jiann-Fuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 高昇壓增益 、耦合電感 、電壓昇舉技術 、倍壓 |
| 外文關鍵詞: | high step-up voltage gain, coupled inductor, voltage-lift technique, voltage doubler |
| 相關次數: | 點閱:146 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究與設計具有高升壓比之新型高昇壓比直流-直流功率轉換器。此新型高昇壓直流-直流電源轉換器具有高昇壓增益比、高轉換效率與低開關電壓應力之特性。在第一種新型高昇壓比直流-直流電源轉換器中,主要是利用電壓昇舉技術與調整耦合電感的圈數比來達到高昇壓增益之功能。在另一種新型高昇壓比直流-直流功率轉換器中,其高昇壓增益是藉由倍壓技術與調整耦合電感的圈數比來達成。此外,在所提出的新型高昇壓比直流-直流功率轉換器中,儲存於耦合電感中之漏電感能量,可藉由開關在截止期間予以回收,因此轉換效率得以提升,並且能夠有效地箝制功率開關上的電壓。有鑑於此,可使用具有較低額定電壓與低導通阻抗特性的功率半導體開關元件,因此可有效地降低電路中的導通損失,使得轉換效率得以提升。本論文中亦對所提之新型高昇壓比直流-直流功率轉換器作一詳細的穩態電路動作分析,並對於轉換器中之電壓增益與邊界工作條件亦作詳細的推導。最後實際設計製作完成所提之新型高昇壓比直流-直流功率轉換器的硬體電路,並藉由實際電路量測結果,驗證此新型高昇壓比直流-直流功率轉換器確實具有高昇壓增益、高轉換效率以及低開關電壓應力之特性。此新型高昇壓直流比-直流電源轉換器可適用於如車用HID頭燈照明、不斷電系統之直流儲能、電動載具驅動系統、太陽能與燃料電池等系統的前級電源轉換器上。
Novel step-up DC-DC converters with high step-up voltage ratio are proposed in this dissertation. These proposed converters have the features of high efficiency, high step-up voltage ratio, and low voltage stress on power switches. In this dissertation, one of the proposed high step-up converters can achieve high step-up voltage ratio by adjusting the turn ratio of the coupled inductor and voltage-lift technique for energy conversion. The other high step-up converter can adopt voltage double technique and adjusts the turn ratio of the coupled inductor to accomplish high step-up voltage ratio for power conversion. In addition, for these proposed converters, since the energy stored in the leakage inductor is recycled during switch-off period, the conversion efficiency can be improved. Also, the voltage on the active switch is clamped effectively for the low voltage rating and a low on-resistance power switch is selected to reduce conduction loss. Moreover, this dissertation describes the operating principle and steady-state analysis for the proposed converters. Also, the step-up voltage gains and boundary conditions of these converters are obtained. Finally, laboratory prototype converters were built to demonstrate the performances, including high voltage ratio, high conversion efficiency and the effective suppression of the voltage stress on power switch. The proposed high step-up converters can be used for the applications involving power conversion, such as high-intensity discharge lamps for automobile headlamps, DC back-up energy for uninterruptible power supplies, drivers for electric vehicles, the front-stages of fuel cell and solar cell power conversion.
[1] J. M. Correa, F. A. Farret, N. Canha and M.G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1103–1112, Oct. 2004.
[2] Z. Jiang and R.A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094–1104, Aug. 2006.
[3] S. M. Lukic, J. Cao, R.C. Bansal, F. Rodriguez and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258–2267, Jun. 2008.
[4] H. Tao, J.L. Duarte and M. A. M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012–3021, Aug. 2008.
[5] M. W. Ellis, M. R. V. Spakovsky, and D. J. Nelson, “Fuel cell systems: Efficient, flexible energy conversion for the 21st century,” Proc. IEEE, vol. 89, no. 12, pp. 1808–1818, Dec. 2001.
[6] C. Wang, M. H. Nenrir, and S. R. Shaw, “Dynamic models and model validation for PEM fuel cells using electrical circuits,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 442–451, June 2005.
[7] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Massachusetts, Kluwer Academic Publishers, 2001, pp. 39–55.
[8] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronic: Converters, Applications and Design. New York, Wiley, 1995, pp. 172–178.
[9] J. Wang F. Z. Peng, J. Anderson, A. Joseph and R. Buffenbarger, “Low cost fuel cell converter system for residential power generation,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1315–1322, Sep. 2004.
[10] R. Sharma and H. Cao, “Low cost high efficiency DC-DC converter for fuel cell powered auxiliary power unit of a heavy vechile,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 587–597, May 2006.
[11] S. J. Finney, B. W. Williams, and T. C. Green, “RCD snubber revisited,” IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 155–160, Jan./Feb. 1996.
[12] D. D. C. Lu, D. K.W. Cheng, and Y. S. Lee, “A single-switch continuous conduction- mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 767–776, Aug. 2003.
[13] Y. S. Lee, and B. T. Lin, “Adding active clamping and soft switching to boost-flyback single-stage Isolated power-factor-corrected power supplies,” IEEE Trans. Power Electron., vol. 12, no. 6, pp. 1017–1027, Nov. 1997.
[14] C. M. C. Duarte, and I. Barbi, “An improved family of ZVS-PWM active-clamping DC-to-DC converters,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 1–7, Jan. 2002.
[15] T. F. Wu, Y. S. Lai, J. C. Hung and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154–162, Jan. 2008.
[16] D. K. W Cheng, X. C. Liu, and Y. S. Lee, “A new improved boost converter with ripple free input current using coupled inductors,” in Proc. IEE Int. Conf. on Power electronics and variable speed drives, pp. 592–599, 1998.
[17] S. K. Changchien, T. J. Liang, K. C. Tseng, J. F. Chen and R. L. Lin, “A demagnetization circuit for single-ended forward converter,” in Proc. IEEE IECON Conf., pp. 1390–1395, 2007.
[18] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Fast response DC-DC converter with transient suppression circuit,” in Proc. Power Electronics Specialists Conf., pp. 1–5, 2006.
[19] C. S. Leu, G. Hua and F. C. Lee, "comparison of forward topologies with various reset schemes," in Proc. VPEC Power Electronic Seminar, pp. 101-109, 1991.
[20] P. Alou, J. A. Cobos, 0. Garcia, R. Prieto and J. Uceda, "Coupling Inductors for Supplying Pulsating Loads with DC/DC Converters," in Proc. IEEE PESC Conf., pp.1790-1795, 1998.
[21] C. S. Leu, G. Hua and F. C. Lee, "Analysis and design of R-C-D clamp forward converter," in Proc. VPEC Power Electronic Seminar, pp. 113-120, 1992.
[22] J. Wang, W. G. Dunford, and K. Monrad, “Analysis of a ripple-free input-current boost converter with discontinuous conduction characteristics,” IEEE Trans. Power Electron., vol. 12, no. 4, pp. 684–694, July 1997.
[23] K. C. Tseng, and T. J. Liang, “Novel high-efficiency step-up converter,” Proc. Inst. Elect. Eng.–Electric Power Applications, vol. 151, no. 2, pp. 182–190, 2004.
[24] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” Proc. Inst. Elect. Eng.–Electric Power Applications, vol. 152, no 2, pp. 217–225, 2005.
[25] T. Dumrongkittigule, V. Tarateeraseth and W. Khan-ngern, “A new integrated inductor balanced switching technique for common mode EMI reduction in high step-up DC/DC converter,” in Proc. 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, pp. 541–544, 2006.
[26] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon and M. J. Youn, “Integrated boost-sepic converter for high step-up applications,” in Proc. IEEE PESC Conf., pp. 944–950, 2008.
[27] J. W. Baek, M. H. Ryoo, T. J. Kin, D. W. Yoo and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. IEEE IECON Conf., pp. 1–6, 2005.
[28] J. Y. Lee and S. N. Hwang, “Non-isolated high-gain boost converter using voltage-stacking cell,” Electron. Lett., vol. 44, no. 10, pp. 644–645, May. 2008.
[29] F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105–113, Jan. 2003.
[30] F. L. Luo and H. Ye, “Positive output multiple-lift push–pull switched-capacitor Luo-converters,” IEEE Trans. Ind. Electrons., IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594–602, June 2004.
[31] R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” Proc. Inst. Elect. Eng.–Electric Power Applications, vol. 152, no. 4, pp. 793–802, 2005.
[32] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005.
[33] R. J. Wai, C. Y. Lin, R. Y. Duan and Y. R. Chang, “High efficiency DC-DC converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electrons., vol. 54, no. 1, pp. 354–364, Feb. 2007.
[34] S. V. Araujo, R. P. T. Bascope, G. V. T. Bascope and L. Menezes, “Step-up converter with high voltage gain employing three-state switching cell and voltage multiplier,” in Proc. IEEE PESC Conf., pp. 2271–2277, 2008.
[35] Y. J. A. Alcazar, R. T. Bascope, D. S. de Oliveira, E. H. P. Andrade and W. G. Cardenas, “High voltage gain boost converter based on three-state switching cell and voltage multipliers,” in Proc. IEEE IECON Conf., pp. 2346–2352, 2008.
[36] O. Krykunov, “Analysis of the extended forward converter for fuel cell applications,” in Proc. IEEE ISIE Conf., pp. 661–666, 2008.
[37] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc–dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.
[38] B. Nagl, A. F. Rafetsender, J. P. Fohringer and F. A. Himmelstoss “DC-to-DC converter simulation applied to a modified boost converter,” in Proc. IEEE EUROCON ICCT Conf., pp. 1594–1600, 2007.
[39] J. P. Fohringer and F. A. Himmelstoss “Analysis of a boost converter with low step-up ratios and reduced voltage stress across the buffer capacitor,” in Proc. IEEE POWERENG Conf., pp. 411–416, 2007.
[40] O. Abutbul, A. Gherlitz, Y. Berkovich and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Circuits and Sys.I, vol. 50, no. 8, pp. 1098–1102, Aug. 2003.
[41] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali and A. A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,” IEEE Trans. Circuits and Sys.I, vol. 55, no. 4, pp. 1159–1171, May 2008.
[42] M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli and R. Gules, “Voltage multiplier cells applied to non-isolated DC-DC converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 871–887, Mar. 2008.
[43] D. M. Van de Sype, K. D. Gussemi, B. Renders, A. P. Van de Bossche and J. A. Melkebeek, “A single-switch boost converter with a high conversion ratio” in Proc. IEEE APEC Conf., pp. 1581–1587, 2005.
[44] W. H. Li, X. D. Lv J. Liu and X. N. He, “A review of non-isolated high step-up DC-DC converter in renewable energy applications” in Proc. IEEE APEC Conf., pp. 364–369, 2009.
[45] L. Palma, M. H. Todorovic and P. Enjeti, “A high gain transformer-less DC-DC converter for fuel-cell applications” in Proc. IEEE PESC Conf., pp. 2514–2520, 2005.
[46] H. Nomura, K. Fujiwara and M. Yoshida, “A new DC-DC converter circuit with large step/down ratio” in Proc. IEEE PESC Conf., pp. 1–7, 2006.
[47] K. Hirachi and M. Nakaoka, “UPS circuit configuration incorporating buck-boost chopper circuit with two magnetically coupled coils,” Electron. Lett., vol. 39, no. 18, pp. 644–645, Sep. 2003.
[48] B. Axerlrod, Y. Berkovich and A. Ioinovici, “Switched coupled-inductor cell for DC-DC converters with very large conversion ratio,” in Proc. IEEE IECON Conf., pp. 2366–2371, 2006.
[49] B. Axelrod, Y. Berkovich and A. Ioinovici, “Switched-capacitor/Switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits and Sys.I, vol. 55, no. 2, pp. 687–696, Mar. 2008.
[50] B. Axerlrod, Y. Berkovich and A. Ioinovici, “Hybrid switched-capacitor-CUK/ZETA/SEPIC converters in step-up mode,” in Proc. IEEE ISCAS Conf., pp. 1310–1313, 2005.
[51] B. Axerlrod, Y. Berkovich and A. Ioinovici, “Switched-capacitor (SC)/Switched-inductor (SL) structures for getting hybrid step-down CUK/ZETA/SEPIC converters,” in Proc. IEEE ISCAS Conf., pp. 5063–5066, 2006.
[52] L. S. Yang, T. J. Liang and J. F. Chen, “Transformerless DC-DC converter with high voltage gain,” IEEE Trans. Ind. Electrons., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.
[53] J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler for fuel cell power systems,” IEEE Trans. Power Electrons., vol. 14, no. 24, pp. 108–115, Jan. 2009.
[54] W. H. Li and X. N. He, “High step-up soft switching interleaved boost converters with cross-winding-coupled inductors and reduced auxiliary switch number,” IET Power Electrons., vol. 2, no. 2, pp. 125–133, Mar. 2009.
[55] J. R. de Britto, L. C. De Freitas, V. J. Farias, E. A. A. Coelho and J. B. Vieira, “A non-insulated step-up/down DC-DC converter with wide range conversion” in Proc. IEEE APEC Conf., pp. 1374–1377, 2009.
[56] M. Zhu and F. L. Luo, “Voltage-lift-type cuk converters: toplogy and analysis,” IET Power Electrons., vol. 2, no. 2, pp. 178–191, Mar. 2009.
[57] E. H. Kim and B. H. Kwon, “High step-up resonant push-pull converter with high efficiency,” IET Power Electrons., vol. 2, no. 1, pp. 79–89, Jan. 2009.
[58] P. Klimczak and S. Munk-Nielsen, “Boost converter with threeistate switching cell and integrated magnetics” in Proc. IEEE APEC Conf., pp. 1378–1383, 2009.
[59] P. Thounthong, P. Sethakul and B. Davat, “Modified 4-phase interleaved fuel cell converter for high-power high-voltage applications” in Proc. IEEE ICIT Conf., pp. 1–6, 2009.
[60] Y. C. Hsieh, T. C. Hsueh and H. C. Yen, “An interleaved boost converter with zero-voltage transition,” IEEE Trans. Power Electrons., vol. 24, no. 4, pp. 973–978, Apr. 2009.
[61] C. T. Pan, S. K. Liang and C. M. Lai, “A zero input current ripple boost converter for fuel cell applications by using a mirror ripple circuit” in Proc. IEEE IPEMC Conf., pp. 787–793, 2009.
[62] S. Kapat, A. Patra and S. Banerjee, “A current-controlled tristate boost converter with improved performance through RHP zero elimination,” IEEE Trans. Power Electrons., vol. 24, no. 3, pp. 776–786, Mar. 2009.
[63] M. R. Nikzad and A. Radan, “Effects of fuel cell and DC-link voltage on boost converter efficiency in fuel cell-battery hybrid vehicles” in Proc. IEEE IPEMC Conf., pp. 2313–2317, 2009.
[64] S. S. Lee, S. W. Rhee and G. W. Moon, “Coupled inductor incorporated boost half-bridge converter with wide ZVS operation range,” IEEE Trans. Ind. Electrons., vol. 56, no. 7, pp. 2505–2512, Jul. 2009.
[65] E. Firmansyah, S. Tomioka, S. Abe, M. Shoyama and T. Ninomiya, “Steady state characteristics of active-clamped full-wave zero-current-switched quasi-resonant boost converters” in Proc. IEEE IPEMC Conf., pp. 556–560, 2009.
[66] D. Y. Jung, Y. H. Ji, C. Y. Won, S. W. Lee and Y. C. Jung, “Loss analysis in soft switching boost converter using a single switch” in Proc. IEEE IPEMC Conf., pp. 1416–1420, 2009.
[67] M. Nymand and M.A.E. Anderson, “New primary-parallel boost converter for high-power high –gain applications” in Proc. IEEE APEC Conf., pp. 35–39, 2009.
[68] B. Abdi, A. H. Ranjbar, G. B. Gharehpetian and J. Milimonfared, “Reliability considerations for parallel performance of semiconductor switches in high-power switching power supplies,” IEEE Trans. Ind. Electrons., vol. 56, no. 6, pp. 2133–2139, Jun. 2009.
[69] K. S. Choi, C. Y. Won, Y. C. Jung and J. W. Kim, “ZVS H-bridge inverter using soft switching boost converter” in Proc. IEEE IPEMC Conf., pp. 1488–1492, 2009.
[70] J. W. Shin, S. Y. Chae and B. H. Cho, “A new zero current transition boost converter using split inductors” in Proc. IEEE IPEMC Conf., pp. 534–539, 2009.
[71] G. Calderon-Lopez and A. J. Forsyth, “High-power dual-interleaved ZVS boost converter with interphase transformer for electric vehicles” in Proc. IEEE APEC Conf., pp. 1078–1083, 2009.
[72] A. Mousavi, P. Das and G. Moschopoulos, “A ZCS-PWM full-bridge boost converter for fuel-cell applications” in Proc. IEEE APEC Conf., pp. 459–464, 2009.
[73] R. Pilawa-Podgurski, A. D. Sagneri, J. M. Rivas, D. I. Ahderson and D. J. Perreault, “Very-high-frequency resonant boost converters,” IEEE Trans. Power Electrons., vol. 24, no. 6, pp. 1654–1665, Jun. 2009.
[74] N. J. Park and D. S. Hyun, “IBC using single resonant inductor for high-power applications,” IEEE Trans. Ind. Electrons., vol. 56, no. 5, pp. 1522–1530, May 2009.
[75] M. R. Amini and H. Farzanehfard, “Novel famoly of PWM soft-single-switched DC-DC converters with coupled inductors,” IEEE Trans. Ind. Electrons., vol. 56, no. 6, pp. 2108–2114, Jun. 2009.