簡易檢索 / 詳目顯示

研究生: 袁明安
Yuan, Ming-An
論文名稱: 利用類神經網路殘差補償提升線性代謝當量迴歸模型精準度
Using a neural network for the residual error compensation of a linear energy expenditure regression model
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 61
中文關鍵詞: 類神經網路殘差代謝當量動作分類特徵選取
外文關鍵詞: neural network, residual error compensation, metabolic equivalents, energy expenditure regression model.
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在使用加速度感測模組與心電感測器實現一代謝當量估測模式,並搭配殘差估測演算法,提升代謝當量估測之精準度。本論文演算法使用佩戴於手腕、腳踝及腰部之三軸加速度感測模組與心電感測器收集之訊號,估測使用者活動時的代謝當量(metabolic equivalents, METs)。本研究首先依照加速度訊號特徵建構活動分類器,用於辨別生活中常見五種動作類型(全身不動、手腰腳活動、手腳活動、手部運動、腳部運動)。在各種活動類別中,基於加速度訊號及心電訊號之特徵,利用依序向前搜尋法(sequential forward selection, SFS)分別建立線性迴歸模型與類神經網路模型以估測代謝當量或是估測值與實際代謝當量的殘差,利用這兩種模型組合成為六種估測模式:(1)線性代謝當量估測模型、(2)類神經網路估測模型、(3)以類神經網路估測殘差搭配線性代謝當量估測模型、(4)以線性殘差估測模型搭配類神經網路代謝當量估測模型、(5)以線性殘差估測模型搭配線性代謝當量估測模型、(6)以類神經網路殘差估測模型搭配類神經網路代謝當量估測模型。本論文以判定係數(R2)以及代謝當量平均估測誤差來驗證所提出之方法之有效性,使用類神經網路代謝當量估測模型搭配類神經網路殘差估測模型進行代謝當量估測之R2=0.9565,相較於使用類神經網路代謝當量估測模型估測之R2=0.952與線性代謝當量估測模型之R2=0.9363相關性要來得高;而類神經網路代謝當量估測模型搭配類神經網路殘差估測模型之平均估測誤差為0.43±0.44 (METs),相較類神經網路代謝當量估測模型之平均誤差0.44±0.46 (METs),與線性代謝當量估測模型之平均估測誤差0.52±0.51 (METs),其準確度更高。

    This thesis presents a metabolic equivalents (METs) model with a residual estimation model for METs estimation. The proposed approach classifies most common daily activities into five types of categories. Features derived from electrocardiogram (ECG) and acceleration signals are first selected by sequential forward selection (SFS) strategy. The selected features are then used to construct a linear METs regression model or a neural network for preliminary METs estimation. These selected features are also constructed to improve the estimation accuracy by using the residual error, the difference between the estimated result of the METs estimation model and the actual METs. The final estimated METs are obtained by combining the outputs of the METs estimation model and the residual error compensation obtained by the residual estimation model. Using the two models to construct six combinations: Model1: linear regression model, Model 2: an NN METs estimation model, Model 3: a combination of a linear METs regression model and an NN METs residual error estimation model, Model 4: a combination of an NN METs estimation model and a linear residual error estimation model, Model 5: a combination of a linear METs regression model and a linear residual error estimation model, Model 6: a combination of an NN METs estimation model and an NN METs residual error estimation model. In order to validate the proposed approach, we compared the coefficients of determination (R2) and the mean absolute errors of the six models. In our experiments, the R2 of Model 6 is R2=0.9565 which is higher than Model 2 (R2=0.952). This result is also higher than Model 1 (R2=0.9363). The MAE of Model 6 is 0.43±0.44 METs, which is higher than using Model 2. This result is also better than Model 1, 0.52±0.51 METs.

    目錄 中文摘要 i 英文摘要 iii 誌謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 5 1.4 論文架構 5 第2章 實驗架構與流程 6 2.1 系統硬體架構 7 2.1.1 K4B2氣體分析儀(Cardio Pulmonary Exercise Testing) 7 2.1.2 加速度感測模組 8 2.1.3 心電感測器 9 2.1.4 同步資料收集介面 9 2.2 實驗環境設定與資料收集 11 第3章 動作分類與線性代謝當量估測搭配類神經網路殘差估測之代謝當量估測演算法 16 3.1 演算法架構 16 3.2 訊號前處理 17 3.3 特徵擷取 20 3.4 特徵選取 25 3.5 動作分類演算法 27 3.6 線性代謝當量估測搭配類神經網路殘差估測之熱量估測演算法 31 3.6.1 線性代謝當量估測模型 34 3.6.2 殘差估測之人工類神經網路模型 36 第4章 實驗結果 38 4.1 動作分類演算法實驗結果 38 4.2 代謝當量估測演算法實驗結果 41 4.2.1 線性代謝當量估測模型實驗結果 43 4.2.2 類神經網路代謝當量估測模型實驗結果 44 4.2.3 代謝當量估測與殘差估測選用不同模型比對之實驗結果 46 4.3 實驗結果討論 53 第5章 結論與未來工作 55 5.1 結論 55 5.2 未來工作 56 參考文獻 57   表目錄 表2.1受測者個人資料 12 表2.2實驗活動之受測方式與受測地點 14 表3.1特徵編號表 25 表3.2各部位所有活動的COUNT值 27 表3.3利用COUNT值比較歸類結果 29 表4.1各類別分類結果 39 表4.2各活動分類結果 39 表4.3估測模型組合方式 42 表4.4 線性代謝當量估測模型實驗結果 44 表4.5單一類神經網路模型實驗結果 45 表4.6各模型MAE比較 47 表4.7各模型之判定係數比較 48 表4.8實驗結果選擇出較佳的轉移函數 49 表4.9線性代謝當量估測模型經由SFS特徵選取之後的方程式 54 圖目錄 圖2.1 COSMED K4B2氣體分析儀 7 圖2.2加速度感測模組 8 圖2.3加速度感測模組之硬體架構 8 圖2.4 MSI ECG E3-80心電感測器 9 圖2.5 LABVIEW感測器同步介面 10 圖2.6感測器同步啟動示意圖 11 圖2.7受測流程圖 12 圖3.1活動分類以及代謝當量估測演算法 17 圖3.2低通濾波前、後比較圖 18 圖3.3視窗化 19 圖3.4跑步7KM/H第0-10秒的ECG訊號R波偵測 20 圖3.5受測者做7KM/H活動8分鐘完整的BPM換算結果 20 圖3.6 SFS特徵選取結合線性回歸估測流程圖 26 圖3.7各活動BPM與MET對應關係圖 32 圖3.8線性代謝當量估測搭配類神經網路殘差估測模型流程圖 33 圖3.9線性代謝當量估測模型建立流程圖 35 圖3.10多層前饋網路架構圖 36 圖3.11殘差估測之類神經網路建構流程圖 37 圖4.1迴歸樹模型 41 圖4.2線性代謝當量估測模型建構之流程圖 44 圖4.3單一人工類神經網路模型建構之流程圖 46 圖4.4模型(2)、(4)、(6)訓練ANN估測MET之學習曲線 50 圖4.5模型(3)訓練ANN估測殘差之學習曲線 51 圖4.6模型(6)訓練ANN估測殘差之學習曲線 52

    參考文獻
    O. H. Franco, C. de Laet, A. Peeters, J. Jonker, J. Mackenbach, and W. Nusselder, “Effects of physical activity on life expectancy with cardiovascular disease,” Arch Intern Med, vol. 165, no. 20, pp. 2355-2360, 2005.
    I. M. Lee, H. D. Sesso, and R. S. Paffenbarger, “Physical activity and coronary heart disease risk in men does the duration of exercise episodes predict risk,” Circulation, vol. 102, no. 9, pp. 981-986, 2000.
    B. A. Calton, R. Z. Stolzenberg-Solomon, S. C. Moore, A. Schatzkin, C. Schairer, D. Albanes, and M. F. Leitzmann, “A prospective study of physical activity and the risk of pancreatic cancer among women (United States),” BioMed Central Cancer, vol. 8, no. 1, pp. 63-72, 2008.
    W. H. Pan, H. J. Wu, C. J. Yeh, S. Y. Chuang, H.Y. Chang, N. H. Yeh, and Y. T. Hsieh, “Diet and health trends in Taiwan: comparison of two nutrition and health surveys from 1993-1996 and 2005- 2008,” Asia Pac J Clin Nutr, vol. 20, no. 2, pp. 238-250, 2011
    M. P. Rothney, E. V. Schaefer, M. M. Neumann, L. Choi, and K. Y. Chen, “Validity of physical activity intensity predictions by Actigraph, Actical, and RT3 accelerometers,” Obesity Society, vol. 16, no. 8, pp. 1946-1952, 2008.
    S. E. Crouter, J. R. Churilla, and D. R. Bassett, “Estimating energy expenditure using accelerometers,” Eur. Journal of Applied Physiology, vol. 98, no. 6, pp. 601-612, 2006.
    S. M. Slootmaker, C. A Paw, A. J. Schuit, W. Van. Mechelen, and L. L. J. Koppes, “Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference,” Medicine & Science in Sports & Exercise, vol. 19, no. 1, pp. 36-43, 2009.
    K. Y. Chen and D. R. Bassett, “The technology of accelerometry-based activity monitors: current and future,” Medicine and Science in Sports and Exercise, vol. 37, no. 11, pp. S490-S500, 2005.
    H. J. Montoye, R. Washburn, S. Servais, A. Ertl, J. G. Webster, and F. J. Nagle, “Estimation of energy expenditure by a portable accelerometer,” Medicine and Science in Sports and Exercise, vol. 15, pp. 403-407, 1982.
    A. M. Swartz, S. J. Strath, D. R. Bassett, W. L. O’brien, G. A. King, and B. E. Ainsworth, “Estimation of energy expenditure using CSA accelerometers at hip and wrist sites,” Medicine and Science in Sports and Exercise, vol. 32, no. 9, pp. S450-S456, 2000.
    P. S. Freedson, E. Melanson, and J. Sirard, “Calibration of the computer science and applications, Inc. accelerometer,” Medicine and Science in Sports and Exercise, vol. 30, no. 5, pp. 777-781, 1998.
    D. Hendelman, K. C. Baggett, E. Debold, and P. Freedson, “Validity of accelerometry for the assessment of moderate intensity physical activity in the field,” Medicine and Science in Sports and Exercise, vol. 32, no. 9, pp. S442-S449, 2000.
    M. P. Rotheny, M. Neuman, A. Beziat, and K. Y. Chen, “Validity of physical activity intensity predictions by Actigraph, Actical, and RT3 accelerometers,” Obesity, vol. 16, no. 8, pp. 1946-1952, 2008.
    M. J. Karvonen, E. Kentala, and O. Mustala, “The effects of training on heart rate: A longitudinal study,” Ann Med Exp Biol Fenn, vol. 35, pp. 307-315, 1957.
    D. P. Swain and B. C. Leutholtz, “Heart rate reserve is equivalent to %VO2 reserve, not to %VO2max,” Medicine and Science in Sports and Exercise, vol. 29, no. 3, pp. 410-414, 1997.
    D. P. Swain, B. C. Leutholtz, M. E. King, L. A. Haas, and J. D. Branch, “Relationship between % heart rate reserve and % VO2 reserve in treadmill exercise,” Medicine and Science in Sports and Exercise, vol. 30, pp. 318-321, 1998.
    N. M. Moyna, R. J. Robertson, C. L. Meckes, J. A. Peoples, N. B. Millich, and P. D. Thompson, “Intermodal comparison of energy expenditure at exercise intensities corresponding to the perceptual preference range,” Medicine and Science in Sports and Exercise, vol. 33, pp. 1404-1410, 2001.
    G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, pp. 159-175, 2003.
    S. M. Al-Alawi, S. A. Abdul-Wahab, and C. S. Bakheit, “Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone,” Environmental Modelling & Software, vol. 23, no. 4, pp. 396-403, 2008.
    S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, D. Howard, K. Meijer, and R. Crompton, “Activity identification using body-mounted sensors-A review of classification techniques” Physiological Measurement, vol. 30, no. 4, pp. R1-R33, 2009.
    E. M. Munguia, “Using Machine Learning for Real-time Activity Recognition and Estimation of Energy Expenditure”, Diss. Massachusetts Institute of Technology, 2008.
    A. Whitney, “A direct method of nonparametric measurement selection,” IEEE Transactions on Computers, vol. 20, pp.1100-1103, 1971.
    L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, “Classification and regression trees,” CRC press, 1984.
    E. K. Chong and S. H. Zak, “An introduction to optimization,” John Wiley & Sons, 2013.
    K. Hornik, M. Stinchcombe, and H. White, “Multiplayer feedforward networks are universal approximators,” Neural Networks, vol.2, no. 5, pp.359-366, 1989.
    J. J. More, “The Levenberg-Marquardt algorithm: implementation and theory,” Numerical analysis. Springer Berlin Heidelberg, pp. 105-116, 1978.
    戴久永,統計概念與方法,民國88年8月。
    M. Luštrek, B. Cvetković, and S. Kozina, “Energy expenditure estimation with wearable accelerometers,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 5-8, 2012.
    B. Cvetkovic, R. Milic, and M. Lustrek. “Estimating energy expenditure with multiple models using different wearable sensors,” Accepted by IEEE Journal of Biomedical and Health Informatics.
    A. K. Bourke, F. Masse, A. Arami, K. Aminian, M. Healy, J. Nelson, and S. Coote, “Energy expenditure estimation using accelerometry and heart rate for multiple sclerosis and healthy older adults,” in Proceedings of 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops, pp. 1-5, 2014.
    J. W. Denton, “How good are neural networks for causal forecasting?,” The Journal of Business Forecasting, vol. 14, no. 2, pp. 17-20, 1995
    P. F. Pai and C. S. Lin. “A hybrid ARIMA and support vector machines model in stock price forecasting,” Omega, vol. 33, no. 6, pp. 497-505, 2005.
    C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, “A triaxial accelerometer and portable data processing unit for assessment the assessment of daily physical activity,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 3, pp. 136-147, 1997.
    F. C. Chuang, “Development of inertial-sensor-based hand gesture recognition and physical activity energy expenditure estimation technologies,” Ph. D dissertation, National Cheng Kung University, Taiwan, 2012.

    無法下載圖示 校內:2026-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE