簡易檢索 / 詳目顯示

研究生: 鄭旭志
Cheng, Hsu-Chih
論文名稱: 基於基因演算法之光纖光柵參數合成與感測應用
Fiber Bragg Grating Parameter Synthesis and Sensing Applications Using Genetic Algorithm
指導教授: 黃振發
Huang, Jen-Fa
羅裕龍
Lo, Yu-Lung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 127
中文關鍵詞: 光纖光柵溫度應變基因演算法
外文關鍵詞: fiber Bragg grating, genetic algorithm, strain, temperature
相關次數: 點閱:101下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,光纖光柵(Fiber Bragg Grating, FBG)被廣泛的使用在光纖通訊系統以及光纖感測系統上,布雷格光纖光柵在最近的十幾年中快速地發展,其最主要的功能是做為光的濾波器。因為布雷格光纖光柵具有低損耗、不受電磁干擾、成本低廉等優點,所以在目前已經被大量應用在光纖通訊及光纖感測等方面。

    這篇論文主要是在光纖光柵的參數合成和感測應用之理論研究與實驗證實。在結合基 因演算法與光纖光柵之反射強度頻譜,光纖光柵的參數和應變、溫度分布之應用被提出並利用實驗證明。在大部分的光纖光柵應用前,光纖光柵的內部參數必須要先得知。有很多方法可以重建光纖光柵的內部參數。 例如Layer-Peeling、Fourier Transform、Optimization Method等。這些方法對於不同形式的光纖光柵會有一些不同的限制。因此,這篇論文提出得到光纖光柵的內部參數重建的一種新方法。而且,重建光纖光柵的完整參數需要光纖光柵的複數反射頻譜(強度和相位頻譜)。從簡單的儀器像是光強度儀或者光頻譜分析儀等來獲得光纖光柵的反射強度頻譜是容易的操作。不過,獲得光纖光柵的反射相位頻譜卻是需要繁雜、困難的程序。常見獲得光纖光柵反射相位頻譜的方法包括常用的相移法(Phase Shift Technique)、干涉法(Interferometric)和相位重建演算法(Phase Reconstruction Method)等等,這些方法雖有一些優點,但是他們也在實際用途方面有一些限制。這篇論文所提出的參數重建方法也提供一種技術獲得光纖光柵的複數反射頻譜。這種方法利用兩個光纖光柵的熱調變反射頻譜配合基因演算法來的到光纖光柵的完整參數,再利用這些參數進而求出光纖光柵的反射相位頻譜。為了證明提出方法的正確性,我們提供了幾個模擬和實驗結果。

    光纖光柵在近年成為光纖感測器系統的一個重要的元件。除了具有光纖感測器的優勢以外,光纖光柵最重要的是可以提供優秀的分波多工 (Wavelength Multiplexing)能力。在大部分光纖感測應用的過程中,光纖光柵所提供的是外界擾動量平均的訊息值。但是在很多應用中,不僅需要獲得擾動量(strain and temperature)的平均值而且需要獲得沿著光纖光柵長度上所感受的擾動量分布(strain and temperature distribution)。這些外界擾動量分布會使得光纖光柵反射波長呈現非均勻的分布,因此,光纖光柵將產生一錯綜複雜反射頻譜。這個影響同樣會造成相位頻譜的變化。一些文獻中提到許多方法可以得到光纖光柵上的外界擾動量的分布。在這裡,我們也提出一種新的光纖光柵配置可以來獲得沿著光纖光柵長度上的任意外界擾動量分布。

    在這篇論文裡,我們提出一種基于兩個熱調變反射強度頻譜和基因演算法的光纖光柵參數合成法。這方法可能重建光纖光柵的內部參數例如光柵位置,週期,長度和折射率分布。在光纖光柵的參數重建之後,我們能使用這些參數來完成任意的應變和溫度分佈。

    This dissertation addresses a wide range of theoretical and experimental issues relating to the parameter synthesis and sensing applications of fiber Bragg gratings (FBGs). Specifically, the dissertation develops novel methods for: (1) reconstructing the multiple parameters of an FBG using a genetic algorithm (GA), (2) sensing arbitrary strain distributions using a GA to inversely search two FBG reflection intensity spectra, and (3) sensing arbitrary strain and temperature distributions simultaneously using a modified GA to inversely search the intensity spectra of FBGs.

    FBG applications generally require the parameters of the FBG to be known. Many methods have been proposed for reconstructing an FBG’s parameters, including the layer-peeling technique, Fourier transformation, optimization schemes, and so on. However, each method is generally better suited to the parameter synthesis of one particular type of FBG. Accordingly, this dissertation presents a novel, more general, method for the reconstruction of FBG parameters. Reconstructing the complete characteristics of an FBG requires its complex reflection spectrum to be known. Although the reflection intensity spectrum of an FBG is easily obtained using simple instrumentation such as optical power meters or optical spectrum analyzers, obtaining the phase response of the FBG is more difficult. Common methods for obtaining the phase response include the conventional phase-shift technique, interferometric approaches, phase reconstruction algorithms, and so forth. Although each method has certain advantages, they are all limited in some regard when applied in practice. Therefore, a principal objective of this dissertation is to develop a practical approach for obtaining a complete characterization of FBGs of various types. In the proposed approach, the complete set of FBG parameters, namely the grating position, grating period, grating length and index of modulation along the grating length, are extracted from two thermally-modulated reflection intensity spectra using a GA. The performance of the proposed method is verified through its application to a number of simulated and experimental problems.

    FBGs have emerged as an important component in fiber sensor systems in recent years. Fiber gratings enhance the advantages of fiber sensor systems by adding a powerful wavelength multiplexing capacity. However, FBG-based sensing systems are limited in the sense that they typically provide information of the measurand (generally strain and temperature) only at the level of an average value over the length of the grating. In practice, however, the user is generally more interested in obtaining the distribution profile of the measurand over the FBG length rather than a simple average value. In an FBG, different grating sections reflect different wavelengths when the FBG encounters a non-uniform distribution of the measurand. The FBG therefore produces a complicated reflection spectrum since each section of the grating contributes predominantly at its local Bragg wavelength. This non-uniformity characteristic affects both the intensity and the phase spectra of the FBG.

    Exploiting this characteristic, this dissertation develops two novel FBG-based sensing arrangements. In the first arrangement, arbitrary strain distributions are sensed by using a GA to inversely search two FBG reflection intensity spectra, while in the second, arbitrary strain and temperature distributions are sensed simultaneously by using a modified GA to inversely search the intensity spectra of four FBGs.

    Chapter 1 Introduction 1 1.1 Overview of Fiber Bragg gratings 1 1.2 Fiber Bragg Grating Parameter Synthesis 2 1.3 Fiber Bragg Grating Sensing Systems 4 1.4 Motivation of Dissertation 6 1.5 Structure of Dissertation 8 Chapter 2 Principles and Concepts of FBG and Genetic Algorithm 11 2.1 Coupled-mode Theory 11 2.2 Transfer Matrix Method 17 2.3 Fabrication of Fiber Bragg Gratings 19 2.4 Types of Fiber Bragg Grating 22 2.4.1 Chirped Fiber Bragg Grating 23 2.4.2 Gaussian-Apodized Fiber Bragg Grating 25 2.4.3 Phase-Shifted Fiber Bragg Grating 27 2.5 Basic Concepts of Genetic Algorithm 28 2.6 Summary 33 Chapter 3 Uniform and Chirped Fiber Bragg Grating Parameter Synthesis 34 3.1 Thermally-Modulated Reflection Intensity Spectra Method 34 3.2 Methodology and Implementation 39 3.3 Numerical Results 47 3.3.1 Uniform Fiber Bragg Grating 47 3.3.2 Chirped Fiber Bragg Grating 51 3.4 Experimental Results 55 3.4.1 Uniform Fiber Bragg Grating 58 3.4.2 Chirped Fiber Bragg Grating 61 3.4.3 Phase Reconstruction of Chirped Fiber Bragg Grating 64 3.5 Summary 67 Chapter 4 Arbitrary Strain and Temperature Distribution Sensing Method 69 4.1 Basic Concepts of Arbitrary Strain Distribution Sensing Method 69 4.2 Methodology and Implementation 72 4.3 Numerical Results of Arbitrary Strain Distribution Sensing Method 77 4.3.1 Linear Positive Gradient Strain Distribution 78 4.3.2 Linear Negative Gradient Strain Distribution 79 4.3.3 Non-uniform Strain Distribution 81 4.3.4 Noisy Effect of Reflection Intensity Spectra 83 4.4 Simultaneous Arbitrary Strain and Temperature Sensing Method 86 4.5 Numerical Results for Arbitrary Strain and Temperature Sensing Method 94 4.5.1 Result for Linear Temperature Profile and Complicated Strain Profile 95 4.5.2 Result for Complicated Strain and Temperature Profiles 98 4.5.3 Result for more Complicated Strain and Temperature Profiles 101 4.6 Numerical Investigation on Arbitrary Strain Distribution Sensing Method With FBG-based Sagnac Interferometer 104 4.7 Numerical results for FBG-based Sagnac Interferometer Sensor 110 4.7.1 Linear Positive Gradient Strain Distribution 111 4.7.2 Linear Negative Gradient Strain Distribution 113 4.7.3 Non-uniform Strain Distribution 115 4.8 Summary 117 Chapter 5 Conclusion and Future Studies 118 References 122

    [1]R. Kashyap, Fiber Bragg Gratings, San Diego, CA: Academic Press, 1999
    [2]A. Othonos and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and Sensing, Boston: Artech House, 1999
    [3]M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, “Measurement of arbitrary strain profiles within fibre gratings,” Electron. Lett., vol. 32, pp. 1028-1029 (1996).
    [4]C. J. S. de Matos, P. Torres, L. C. G. Valente, W. Margulis, and R. Stubbe, “FBG characterization and shaping by local pressure,” J. Lightwave Technol., vol. 19, pp. 1206-1211 (2001).
    [5]N. Roussel, S. Magne, C. Martinez, and P. Ferdinand, “Measurement of index modulation along fiber Bragg gratings by side scattering and local heating techniques,” Fiber optic Techno., vol. 5, pp. 119-132 (1999).
    [6]J. Azana, M.A. Muriel, L.R. Chen, and P.W.E. Smith, “FBG period reconstruction using time-frequency signal analysis and application to distributed sensing,” J. Lightwave Technol., vol.19, pp. 646-654 (2001).
    [7]R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of non-uniform FBGs,” J. Quantum Electron, vol. 35, pp. 1105-1115 (1999).
    [8]J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” J. Lightwave Technol., vol. 16, pp. 1928-1932 (1998).
    [9]G. Cormier and R. Boudreau, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” J. Opt. Soc. Am. B., vol. 18, pp. 1771-1776 (2001).
    [10]F. Casagrande, P. Crespi, A. M. Grassi, A. Lulli, R. P. Kenny, and M. P. Whelan, “From the reflected spectrum to the properties of a FBG: a genetic algorithm approach with application to distributed strain sensing,” Appl. Opt., vol. 41, pp. 5238-5244 (2002).
    [11]P. Dong, J. Azana, A. G. Kirk, ”Synthesis of FBG parameters from reflectivity by means of a simulated annealing algorithm.” Opt. Comm., vol. 228, pp. 303-308 (2003).
    [12]D. Derricson, Fiber Optic Test and Measurement, Prentice Hall, New Jersey, 1998.
    [13]B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in fiber optics using LEDs,” J. Quantum Electron, vol. 18, pp. 1509-1515, (1982).
    [14]S. Ryu, Y. Horiuchi, and K. Monchizuki, “Novel chromatic dispersion measurement method over continuous gigahertz tuning range,” J. Lightwave Technol., vol. 7, pp. 1177-1180, (1989).
    [15]S. D. Dyer, K. B. Rochford, and A. H. Rose, “Fast and accurate low-coherence interferometric measurements of fiber Bragg grating dispersion and reflectance,” Opt. Exp., vol. 5, pp. 262-266, (1999).
    [16]M. Volanthen, H. Geiger, M. J. Cole, R. I. Laming and J. P. Dakin, “Low coherence technique to characterize reflectivity and time delay as a function of wavelength within a long fiber grating,” Electron. Lett., vol. 32, pp. 757-758, (1996).
    [17]S. Barcelos, M. N. Zervas, R. I. Larming, D. N. Payne, L. Reekie, J. A. Tucknott, R. Kashyap, P. F. McKee, F. Sladen, and B. Wojciechowicz, “High accuracy dispersion measurements of chirped fiber gratings,” Electron. Lett., vol. 31, pp. 1280-1282, (1995).
    [18]A. Carballar and M. A. Muriel, “Phase Reconstruction from Reflectivity in Fiber Bragg Gratings,” J. Lightwave Technol., vol. 15, pp. 1314-1322, (1997).
    [19]M. A. Muriel, A. Carballar, “Phase reconstruction from reflectivity in uniform fiber Bragg gratings,” Opt. Lett., vol. 22, pp. 93-95, (1997).
    [20]L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett., vol. 22, pp. 1571-1573, (1997).
    [21]C. Z. Shi, N. Zhang, Y. B. Liao, S. R. Lai, “Non-minimum phase reconstruction from amplitude data in fiber Bragg gratings using an adaptive simulated annealing algorithm,” Optics & Laser Technology, vol. 6, pp. 259-264, (2004).
    [22]S. Y. Huang. M. LeBlanc, M. M. Ohn, and R. M. Measures, “Bragg intragrating structural sensing,” Appl. Opt., vol. 34, pp 5003-5009 (1995).
    [23]M. LeBlanc, S. Y. Huang, M. Ohn, and R. M. Measures, “Distributed strain measurement based on a FBG and its reflection spectrum analysis,” Opt. Lett., vol. 21, pp. 1405-1407 (1996).
    [24]S. Huang, M. M. Ohn, and R. M. Measures, “Phase-based Bragg intragrating distributed strain sensor,” Appl. Opt., vol. 35, pp. 1135-1142 (1996).
    [25]S. Huang, M. M. Ohn, and R. M. Measures, “Continuous arbitrary strain profile measurements with FBGs,” Smart Mater. Struct., vol. 7, pp. 248-256 (1998).
    [26]J. Skaar and H. Engan, “Distributed intragrating sensing using phase retrieval,” published at the 13th International Conference on Optical Fiber Sensors (OFS 1999), Kuongju, S. Koera, B. U. Kim and K. Hotate, Editors, Proceedings of SPIE Vol. 3746, 588-591 (1999).
    [27]C. Z. Shi, N. Zeng, M. Zhang, Y. B. Liao, S. R. Lai, “Adaptive simulated annealing algorithm for fiber Bragg grating distributed strain sensing.” Opt. Comm., vol. 226, pp. 167-173, (2003).
    [28]P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, “Distributed temperature sensing using a chirped fiber Bragg grating,” Meas. Sci. Techno., vol. 15, pp. 1501-1505, (2004).
    [29]H. C. Cheng and Y. L. Lo, “Arbitrary strain distribution measurement using a genetic algorithm approach and two FBG intensity spectra,” Opt. Comm., vol. 239, pp. 323-332, (2004).
    [30]Y. L. Lo, H. C. Cheng, and J. F. Huang, “Simultaneous Strain and Temperature Distribution Sensing Measurements by Using Two Fiber Bragg Grating pairs and Genetic Algorithm,” Accepted for Fiber optic Techno., 2006
    [31]H. C., Cheng, and Y. L., Lo, “Synthesis of Multiple fiber Bragg grating parameters by a genetic algorithm on two thermally-modulated intensity spectra,” J. Lightwave Technol., vol. 23, pp. 2158-2168, (2005).
    [32]H. C. Cheng , Y. L. Lo, J. F. Huang, and S. H. Huang, “Multiple Parameters and Phase Spectra Reconstruction of a Chirped Fiber Bragg Grating by using Two Thermally-modulated Intensity Spectra and Genetic Algorithm,” Accepted for Photonics Technology Letters, 2005.
    [33]J. Bao, X. Zhang, K. Chen, W. Zhou, “Spectra of dual overwritten fiber Bragg grating,” Opt. Comm., vol. 188, pp. 31-39, (2001).
    [34]M. W. Rabin, W. C. Swann, and S. L. Gilbert, “Interleaved, sampled fiber Bragg gratings for use in hybrid wavelength references,” Appl. Opt., vol. 41, pp. 7193-7196, (2002).
    [35]T. Erdogan, “Fiber grating spectra,” J. lightwave Technol., vol.15, pp. 1277-1294, (1997)
    [36]K. O. Hill, et al. “Bragg gratings fabricated in monomode photosensitive fiber optic by UV exposure through a phase mask,” Appl. Phy. Lett., vol. 62, pp. 1035-1037, (1993).
    [37]D. Z. Anderson, et al. “Production of in fiber gratings using a diffractive optical element,” Electron. Lett., vol. 29, pp. 566-568, (1993).
    [38]B. Malo, K. O. Hill, F. Bilodaeu, D. C. Johnson, and J. Albert, “Point by point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett., vol. 29, pp1668-1669, (1993).
    [39]U. Eriksson et al., “Design of fiber gratings for total dispersion compensation.” Opt. Lett., vol. 19, pp. 1028-1030, (1994).
    [40]A. Asseh, H. Storoy, Bengt E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol., vol. 15, pp.1419-1423, (1997).
    [41]K. C. Byron, K. Sugden, T. Bircheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fiber,” Electron. Lett., vol. 29, pp. 1659-1660 (1993).
    [42]B. Eggleton, P. A. Krug, and L. Poladin, “Dispersion compensation by using Bragg grating filters with self induced chirp,” in Tech. Digest of Opt. Fib. Comm. Conf., OFC’94, pp. 227.
    [43]M. C. Farries, K. Sugden, D. C. J. Ried, I. Bennion, A. Molony, and M. J. Goodwin, “Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass filters produced by the use of an amplitude mask,” Electron. Lett., vol. 30, pp. 891-892, (1994).
    [44]F. Ouellette, “The effect of profile noise on the spectral response of fiber gratings,” in Bragg gratings, Photosensitivity, and Poling in Glass Dibers and Waveguides: Applications and Fundamentals, vol. 17, OSA Technical Digest Series, pp. 222-224.
    [45]K. O. Hill, et al., “Aperiodic in fiber gratings for fiber optic dispersion compensation,” in Technical Digest of Post-Deadline Papers, OFC’94.
    [46]T. Stephens et al., “257 km transmission at 10GB/s in non dispersion shifted fiber using an unchirped fiber Bragg grating dispersion compensator,” Electron. Lett., vol. 32, pp. 1559-1561, (1996).
    [47]R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, “A novel method of writing photo-induced chirped Bragg gratings in fiber optics,” Electron. Lett., vol. 12, pp. 996-997, (1994).
    [48]S. Okude, T. Sakai, A. Wada, and R. Yamauchi, “Novel chirped fiber grating utilizing a thermally diffused taper-core fiber,” in Proc. of OFC’96, paper TuO7, pp. 68-69.
    [49]M. A. Putnam, G. M. Williams, and E. J. Friebele, “Fabrication of tapered, strain–gradient chirped fibre Bragg gratings,” Electron. Lett., vol. 31, pp. 309-310, (1995).
    [50]H. Kogelnik, “Filter response of non-uniform almost-periodic structures,” Bell Syst. Tech. J., vol. 55, pp. 109-126, (1975).
    [51]M. Matsuhara and K. O. Hill, “Optical-waveguide band rejection filters: design,” Appl. Opt., vol. 13, pp. 2886-2888, (1974).
    [52]L. Zhang et al., “Post fabrication exposure of gap type bandpass filters in broadly chirped fiber gratings,” Opt. Lett., vol. 20, pp. 1927-1929, (1995).
    [53]J. H. Holland, Adaption in Natural and Artificial Systems. Cambridge, MA: The M.I.T. Press, 1975.
    [54]L. Davis, Handbook of genetic algorithms. Van Nostrad Reinhold.
    [55]D. Beasley, D. R. Bull, R. R. Martin, An overview of genetic algorithm: part 1: fundamentals. University Computing, 1993.
    [56]H. G. Cobb, An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. NRL Memorandum Report 6760, 1990.
    [57]B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, and K. Kikuchi, “Adjustable dispersion-compensation device with wavelength tunablility based on enhanced thermal chirping of FBGs,” Photon. Technol. Lett., vol. 15, pp.416-418 (2003)
    [58]Z. Michalewicz, Genetic Algorithms + Data structures = Evolution Programs, New York: Springer-Verlag (1992).
    [59]B. C. Collings et al., “Short Cavity Erbium/Ytterbium Fiber Lasers Mode-Locked with a Saturable Bragg Reflector,” Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 1065-1075, (1997).
    [60]C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt., vol. 17, pp. 2867-2869, (1978).
    [61]G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in fiber optic,” Photon. Technol. Lett., vol. 7, pp. 78-80, (1995).
    [62]Y. L. Lo, “Using in-fiber Bragg-grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures,” Opt. Eng., vol. 37, 2272-2276, (1998).
    [63]Y. J. Chiang, L. Wang, W. F. Liu, H. S. Chen, C. W. Hsu, and C. C. Yang, “Temperature insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme,” Opt. Comm., vol. 197, 327-330, (2001).
    [64]A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol., vol. 15, 1442-1462, (1997).
    [65]X. Shu, L. Yu, D. Zhao, L. Zhang, K. Sugden, and I. Bennion, “Transmission characteristics of Sagnac interferometers based on fiber Bragg gratings,” J. Opt. Soc. Am. B., 19, pp.2770-2780, 2002.
    [66]X. Shu, S. Jiang, and D. Huang, “Fiber grating Sagnac loop and its multiwavelength-laser application,” Photon. Technol. Lett., 12, pp. 980-982, 2000.
    [67]D. Zhao, X. Shu, Yicheng Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sensors Journal, 3, pp. 734-738, 2003.

    下載圖示 校內:2007-07-24公開
    校外:2007-07-24公開
    QR CODE