| 研究生: |
余國正 Yu, Gwo-Jeng |
|---|---|
| 論文名稱: |
低電壓平方根領域濾波器之設計與
高階平方根領域濾波器之系統性合成 Design of Low-Voltage Square-Root Domain Filters and Systematic Synthesis of High-Order Filters |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 高階平方根領域濾波器 、可延伸性. 、連續時間式濾波器 、系統性合成 、單一晶片系統 、高頻率工作 、平方根領域濾波器 、電流模式平方根領域帶通濾波器 、低電壓準位移位電流鏡 、電子式可調 、電流模式開根號電路 |
| 外文關鍵詞: | square-root domain filter, current-mode square-root domain band-pass filter, low-voltage level-shift current mirror, current-mode square-root circuit, electronically tunable, high frequency operation, continuous-time filter, system-on-a-chip, systematic synthesis, extensibility., high-order square-root domain filter |
| 相關次數: | 點閱:132 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平方根領域(SRD)濾波器係針對一個特別的轉移函數,藉助一非線性技術將其映射至一狀態空間描述的狀態變數,並將該狀態方程式藉接地電容器進一步轉換成節點方程式。 接著,再利用MOSFET的平方定律關係,將節點方程式變成中間變量。其中該節點方程式代表了一階及二階電流模式的SRD濾波器,可由電流鏡、電流模式平方根電路、及電容器所組成。 因此,透過部分子電路的相互聯接來完成節點方程式的硬體實現方式,即可組成電流模式的SRD濾波器。
本文透過低電壓準位移動的技術及TSMC 0.25 m 1p5m CMOS製程技術設計出操作於1.5 V電源電壓下之SRD帶通濾波器,並對幾個SRD濾波器進行模擬,結果顯示模擬與測試的結果極為吻合,更證實中心頻率f0 不僅可達到百萬赫茲的範圍,同時也可用電子方式調整。因此,具有操作頻寬大、可調整、操作電壓低、功率消耗小等優點。
基於工作於飽和區之MOSFET的二次方I-V的關係式,本文也提出一套高階低電壓平方根領域濾波器的系統性合成技術。其中對於輸入信號、狀態空間變量的直流電壓、以及直流偏壓電流I0 的直流成分都有明確的設定。所提出的平方根領域濾波器之原型也能克服介於輸入與輸出節點之間的在直流水準之不相等,以改善實現高階濾波器電路時的可靠性。透過可接受範圍內調整直流偏壓電流I0 的值,不但所提出的平方根領域高階濾波器之原型電路之中心頻率f0 (或3分貝頻率f3dB)可以達到百萬赫茲的範圍,而且也利用電子方式予以調整。以1.5 V電源電壓及TSMC 0.25 m 1p5m CMOS製程之條件進行模擬結果,得到之平均誤差小於1.0%,證實了所提出的合成技術的準確性。
Square-root domain (SRD) filters feature a nonlinear mapping on the state variables of a state-space description for a particular transfer function. In order to realize the SRD filters, state equations must be further transformed to nodal equations at the nodes of grounded capacitors. Furthermore, based on the MOSFET square law relationship, the nodal equations are altered to intermediate variables, where the nodal equations demonstrate that the circuits of first-order and second-order current-mode SRD filters basically comprise current mirrors, current-mode square-root circuits, and capacitors. Then, by means of interconnection of sub-circuits to realize the terms of nodal equations, the circuit diagrams of current-mode SRD filters are accomplished.
Simultaneously, by adopting the technology of low-voltage level-shift and utilizing TSMC 0.25 m 1p5m CMOS technology operated with 1.5 V power supply voltage, an experiment of SRD band-pass filter and several simulated results of SRD filters are proposed. Both of the simulated and measured results agree with each other accordingly, and have shown that the center frequency f0 is not only attainable at megahertz frequencies but also tunable electronically. The proposed circuits, thus, have the advantages of high frequency operation, tuneability, low supply voltage operation, low power consumption, and low noise. Obviously a low voltage continuous-time filter implemented by the conventional digital CMOS technology is proved to be suitable for system-on-a-chip application.
A systematic synthesis for high-order SRD based on the quadratic I-V relationship for an MOSFET operated in saturation region is also presented. Emphases are placed on the methodology of filter synthesis, the constructive settings of DC components for input signals, the DC voltages of the state-space variables, and the DC bias current I0. The proposed prototypes of square-root domain filters are able to overcome the possible inequality between the input and output node of DC level, in which improve the reliability of high-order filter implementation. Furthermore, by means of adjusting the range of the DC bias current I0 in the acceptable boundary, the center frequency f0 or 3 dB frequency f3dB of the proposed prototypical circuits of SRD filters is not only attainable at megahertz frequencies but also tunable electronically. Simulations are performed with the model of a 0.25 m CMOS process at 1.5 V supply voltage. The simulated results, which provide that the average errors of frequency response are smaller than 1.0%, demonstrate the validity of the proposed synthetic technique. The synthesized filters have the features of high frequency operation, tuneability, extensibility, and low power consumption.
[1] R. W. Adams, “Filtering in the log-domain,” Presented at 63rd AES Conf., New York, 1979, Preprint 1470.
[2] D. R. Frey, “Log-domain filtering: an approach to current-mode filtering,” IEE Proc. Pt. G, vol. 140, no. 12, pp. 406-416, 1993.
[3] D. R. Frey, “Exponential state space filters: A generic current mode design strategy,” IEEE Trans. Circuits Syst. I, vol. 43, no. 1, pp. 34-42, 1996.
[4] Y. Tsividis, “Externally linear, time-invariant systems and their application to companding signal processors,” IEEE Trans. Circuits Syst. II, vol. 44, no. 2, pp. 65–85, 1997.
[5] E. M. Drakakis, A. J. Payne, and C. Toumazou, “Log-domain state-space: a systematic transistor-level approach for log-domain filtering,” IEEE Trans. Circuits Syst. II, vol. 46, no. 3, pp. 290-305, 1999.
[6] E. M. Drakakis, A. J. Payne, and C. Toumazou, “Log-domain filters, translinear circuits and the Bernoulli cell,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 1, 1997, pp. 501–504.
[7] E. M. Drakakis, A. J. Payne, and C. Toumazou, “Log-domain filtering and Bernoulli cell,” IEEE Trans. Circuits Syst. I, vol. 46, vo. 5, pp. 559-571, 1999.
[8] C. Toumazou, J. Ngarmnil, and T. S. Lande, “Micropower log-domain filter for electronic cochlea,” Electron. Lett., vol. 30, no. 10, pp. 1839–1841, 1994.
[9] W. Germanovix, G. O’neill, C. Toumazou, E. M. Drakakis, R. I. Kitney, and T. S. Lande, “Analogue micropowered log-domain tone controller for auditory prostheses,” Electron. Lett., vol. 34, no. 11, pp. 1051-1052, 1998.
[10] M. H. Eskiyerli, A. J. Payne, and C. Toumazou, “State-space synthesis of biquads based on the MOSFET square law,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 1, 1996, pp. 321-324.
[11] G. J. Yu, B. D. Liu, Y. C. Hsu, and C. Y. Huang, “Design of log domain low-pass filters by MOSFET square law,” in Proc. the 2nd IEEE Asia Pacific Conf. ASICs, 2000, pp. 9-12.
[12] G. J. Yu, J. J. Chen, H. Y. Lin, B. D. Liu, and C. Y. Huang, “A low-voltage low-power log-domain band-pass filter,” in Proc. Int. Symp. VLSI Technology, Systems, and Applications, 2003, pp. 219-222.
[13] A. J. Lopez-Martin, and A. Carlosena, “A 3.3V tunable current-mode square-root domain biquad,” in Proc. IEEE Int. Symp. Circuits Systems, 2000, pp. 5-8.
[14] M. H. Eskiyerli, A. J. Payne, and C. Toumazou, “State-space synthesis of integrators based on the MOSFET square law,” Electron. Lett., vol. 32, no. 6, pp. 505-506, 1996.
[15] J. Mulder, A.C. van der Woerd, W. A. Serdijn, and A. H. M. van Roermund, “Current-mode companding √x-domain integrator,” Electron. Lett., vol. 32, no. 3, pp. 198-199, 1996.
[16] J. Mulder, A. C. van der Woerd, W. A. Serdijn, and A. H. M. van Roermund, “A 3.3 V current-controlled √x-domain Oscillator,” Analog Integr. Circuits Signal Process., vol. 16, no. 1, pp. 17-28, 1998.
[17] M. H. Eskiyerli, and A. J. Payne, ’Square-root domain filter design and performance.’ Analog Integr. Circuits Signal Process., vol. 22, no. 2-3, pp. 231-243, 2000.
[18] A. J. Lopez-Martin and A. Carlosena, “Systematic design of companding systems by component substitution,” Analog Integr. Circuits Signal Process., vol. 28, no. 3, pp. 91-106, 2001.
[19] A. J. Lopez-Martin and A. Carlosena, “Current-mode multiplier-divider circuits based on the MOS translinear principle,” Analog Integr. Circuits Signal Process., vol. 28, no. 3, pp. 265-278, 2001.
[20] M. Steyaert, J. Crols, S. Gogaert, and W. Sansen, “Low-voltage analog CMOS filter design,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 2, 1993, pp. 1447-1450.
[21] S. S. Rajput and S. S. Jamuar, “Low voltage, low power, high performance current mirror for portable analogue and mixed mode applications,” IEE Proc. Circuits, Devices and Syst., vol. 148, pp. 273-278, 2001.
[22] J. Ramirez-Angulo, R. G.. Carvajal, A. Torralba, J. Galan, A. P. Vega-Leal, and J. Tombs, “The flipped voltage follower: a useful cell for low-voltage low-power circuit design,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 3, 2002, pp. 615-618.
[23] J. Mulder, A. C. van der Woerd, W. A. Serdijn, and A. H. M. Van Roermund, “High-swing cascode MOS current mirror,” Electron. Lett., vol. 32, no. 14, pp. 1251 – 1252, 1996.
[24] A. Zeki and H. Kuntman, “Accurate and high output impedance current mirror suitable for CMOS current output stages,” Electron. Lett., vol. 33, no. 12, pp.1042-1043, 1997.
[25] B. J. Blalock, P. E. Allen, and G. A. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology,” IEEE Trans. Circuits Syst. II, vol. 45, no. 7, pp. 769-780, 1998.
[26] P. Heim and M. A. Jabri, “MOS cascode-mirror biasing circuit operating at any current level with minimal output saturation voltage,” Electron. Lett., vol. 31, no. 9, pp. 690 – 691, 1995.
[27] V. I. Prodanov and M. M. Green, “CMOS current mirrors with reduced input and output voltage requirements,” Electron. Lett., vol. 32, no. 2, pp. 104 – 105, 1996.
[28] T. Itakura and Z. Czamul, “High output-resistance CMOS current mirrors for low- voltage applications,” IEICE Trans. Fundamentals, vol. E80-A, no. 1, pp. 230-232, 1997.
[29] A. J. Lopez-Martin and A. Carlosena, “A 1.5 V CMOS square-root domain filter,” in Proc. IEEE Int. Conf. Electronics, Circuits Systems, 2001, pp. 1465-1468.
[30] A. J. Lopez-Martin and A. Carlosena, “A 1.5 V CMOS companding filter,” Electron. Lett., vol. 38, no. 10, pp. 1346-1348, 2002.
[31] G. J. Yu, C. Y. Huang, J. J. Chen, and B. D. Liu, ”Design of square-root domain filters.’ Analog Integr. Circuits Signal Process., (Accepted) 2004.
[32] G. J. Yu, C. Y. Huang, J. J. Chen, and B. D. Liu, “Design of current-mode square-root domain band-pass filter with reduced voltage.’ Analog Integr. Circuits Signal Process., (Accepted) 2004.
[33] C. T. Chen, Linear System Theory and Design. 3rd Ed., New York: Oxford University Press, 1999.
[34] N. K. Sinha, Control Systems. New York: Holt, Rinehart & Winston, 1986.
[35] N. S. Nise, Control Systems Engineering. New York: John Wiley & Sons, 2000.
[36] C. Y. Chen, C. Y. Huang, and B. D. Liu, “A current-mode defuzzifier circuit to realize the centroid strategy,” IEE Proc. Circuits, Devices and Syst., vol. 144, no. 5, pp. 265-271, 1997.
[37] G. J. Yu, B. D. Liu, Y. C. Hsu, and C. Y. Huang, “Design of log domain low-pass filters by MOSFET square law,” in Proc. the 2nd IEEE Asia Pacific Conf. ASICs, 2000, pp. 9-12.
[38] S. S. Rajput and S. S. Jamuar, “Low voltage analog circuit design techniques,” IEEE Circuits Syst. Mag., vol. 2, no. 1, pp. 24-42, 2002.
[39] L. Benini, G. D. Micheli, and E. Macii, “Designing Low Power Circuits: Practical Recipes,” IEEE Circuits Syst. Mag., vol. 1, no. 1, pp. 6–2, 2001.
[40] M. Ismail and T. Fiez, Analog VLSI Signal and Information Processing. New York: McGraw-Hill, 1994.
[41] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC Design: The Current Mode Approach. Stevenge, U.K.: Peregrines Ltd., 1990.
[42] K. C. Smith and A. Sedra, “The current conveyor—a new circuit building block,” Proc. IEEE, vol. 56, pp. 1368–1369, 1968.
[43] E. Sanchez-Sinencio, ‘Low voltage analog circuit design techniques,’ in Proc. IEEE Int. Workshop Circuits and Syst., 2000, pp. 21-24.
[44] B. J. Blalock, P. E. Allen, and G. A. R. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology’, IEEE Trans. Circuits Syst. II, vol. 45, pp. 769–780, 1998.
[45] P. E. Allen and D. R. Holdberg, CMOS Analog Circuit Design. New York: Holt, Rinehart and Winston, 1987.
[46] S. S. Rajput and S. S. Jamuar, “Design techniques for low voltage analog circuit structures,” in Proc. IEEE Int. Symp. Microelectronics, 2001, pp. 49-52.
[47] Cong Yonghua and R. L. Geiger, ‘Cascode current mirrors with low input, output and supply voltage requirements,’ in Proc. the 43rd IEEE Midwest Symp. Circuits Systems, vol. 1, 2000, pp. 490-493.
[48] G. J. Yu, J. J. Chen, H. Y. Lin, B. D. Liu, and C. Y. Huang, “A low-voltage low-power log-domain band-pass filter,” in Proc. Int. Symp. VLSI Technology, Systems, and Applications, 2003, pp. 219-222.
[49] C. Y. Huang, G. J. Yu, J. J. Chen, H. Y. Lin, and B. D. Liu, “A 1.5 V log-domain band-pass filter based on MOSFET square law,” in Proc. the 5th IEEE Int. Conf. ASICs, vol. 1, 2003, pp. 506-509.
[50] T. F. Bogart, Electronic Devices and Circuits. 3rd Ed., New York: Macmillan, 1993.
[51] G. J. Yu and B. D. Liu, “A systematic synthesis for high-order square-root domain filters with reduced voltage,” Analog Integr. Circuits Signal Process., (Under review) 2004.
[52] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap, “Automated synthesis of analog electrical circuits by means of genetic programming,” IEEE Trans. Evol. Comput., vol. 1, no.2, pp. 109–128, 1997.
[53] A. J. Lopez-Martin and A. Carlosena, “A systematic approach to the synthesis of square-root domain systems,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 5, 1999, pp. 306-309.
[54] K. Uesaka and M. Kawamata, “Synthesis of low-sensitivity second-order digital filters using genetic programming with automatically defined functions,” IEEE Signal Processing Lett., vol. 7, no. 4, pp. 83-85, 2000.
[55] K. Uesaka and M. Kawamata, “Heuristic synthesis of low coefficient sensitivity second-order digital filters using genetic programming,” IEE Proc. Circuits, Devices and Syst., vol. 148, no. 3, pp. 121-125, 2001.
[56] T. Hinamoto, Y. Zempo, Y. Nishino, and W. S. Lu, “An analytical approach for the synthesis of two-dimensional state-space filter structures with minimum weighted sensitivity,” IEEE Trans. Circuits Syst. I, vol. 46, no. 10, pp. 1172–1183, 1999.
[57] Y. C. Wu, G. J. Yu, H. H. Ou, C. Y. Huang, and B. D. Lin, “1-V square-root domain filters design based on modified electronically simulated translinear loop and state-space approach,” in Proc. 2004 IEEJ Int. Analog VLSI Workshop, 2004, pp. 91-96.