簡易檢索 / 詳目顯示

研究生: 方經緯
Fang, Jing-Wei
論文名稱: 在不同葉尖速比下模擬小型水平軸風機尾流特性驗證
Simulation of wake characteristics of horizontal axis miniature wind turbine operating different tip speed ratios
指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 49
中文關鍵詞: 水平軸風機風機尾流大渦模擬渦漩法
外文關鍵詞: Horizontal Axis Wind Turbine, Wind turbine wake, Large Eddy Simulation(LES), Vortex Methold
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    題目: 在不同葉尖速比下模擬小型水平軸風機尾流特性驗證
    學生: 方經緯
    指導教授: 吳毓庭
    此研究使用商用軟體ANSYS FLUENT針對本實驗室成員,許所設計的水平軸三葉縮尺風機葉片,葉片基於NACA 0012與葉片元素理論進行最佳化設計已達到良好的功率係數。風機葉片置放在成大工科再生能源實驗室中小型紊流風洞內(在輪轂高度的來流風速為6.1m s^(-1)、紊流強度為5%)來做尾流量測實驗。基於實驗所量測的邊界條件進行數值模擬分析,透由分析尾流的平均主流速度、紊流強度、主流紊流強度、動量通量等氣動力特性與實驗結果進行驗證。 在此模擬中,我們使用了大渦模擬求解暫態Navier-Stokes方程式與濾波後的亞格子模型(Smagorinsky-Lilly)。 在速度壓力耦合求解的部分使用SIMPLE 算法進行計算過程中,速度與壓力的佚代(iterate)。在速度邊界條件上,結合了Vortex Method (VM)演算法作為紊流產生器,使得下游風機在輪轂高度能接受符合實驗結果的紊流強度。 在實驗中,許使用了不同的葉尖速比來進行尾流風機的量測,其中葉尖速比的變因為透由改變電阻大小產生不同的轉速。因此,我們使用不同轉速做此為此模擬的主要變因,進行尾流特性分析。 在結果顯示出,隨著葉尖速比的增加,對尾流特性有顯著的影響。在特定的葉尖速比下,將產生大幅度的速度降與較高紊流強度。

    關鍵字 : 水平軸風機、風機尾流、大渦模擬、渦旋法

    ABSTRACT

    Subject: Simulation of wake characteristics of horizontal axis miniature wind turbine operating different tip speed ratios

    Student: Jing-Wei Fang

    Advisor: Yu-Ting Wu

    This study used the commercial software ANSYS FLUENT 17 simulated a horizontal-axis three-blade scale wind turbine which designed from our laboratory. The geometry of the blade was optimized based on NACA 0012 and blade element theory (BEM) to reach high aerodynamic performance. In the wind tunnel experiment, a miniature wind turbine rotor was operating with different angular velocities to measure its turbulence intensity at the downstream locations of a turbine. The aerodynamic characteristics of a turbine at the downstream locations x/d =1 to 8 such as time-averaged streamwise velocity, turbulence intensity, streamwise turbulence intensity, and momentum flux which are validated in this article. In this study, the viscous model was selected as Large Eddy Simulation model to resolve Navier-Stokes equations and filtered subgrid-scale model (Smagorinsky-Lilly) in the framework. The SIMPLE algorithm was used to calculate a discretization form of conservation equations and momentum equations. In configurations of velocity boundary conditions, Vortex Method (VM) algorithm was combined as a turbulence generator so that downstream wind turbine could get turbulence intensity from incoming flow approximately 0.05 measured in a wind tunnel experiment.

    The boundary condition configurations have shown a specific aerodynamic behavior at the downstream of a turbine. While increasing angular velocity, the wind turbine wakes have different velocity deficit and turbulence intensity shown by contour plots. Comparison of profile plots has indicated distributions with different angular velocities along spanwise direction at hub height.

    Keywords: Horizontal Axis Wind Turbine、Wind turbine wake、Large Eddy Simulation(LES) 、Vortex Method

    中文摘要 I ABSTRACT II 致謝 III LIST OF TABLES VI LIST OF FIGURES VII NOMENCLATURE X Chapter 1. Introduction 1 1-1. Literature Reviews 2 1-2. Content of Research 6 Chapter 2. Methodology 7 2-1. Geometry and Meshing configurations 7 2-2. Boundary conditions 17 2-3. Cell zone conditions 19 2-4. Turbulence generator 20 2-5. Viscous model and simulation algorithm 26 2-6. Solution method of Pressure-velocity coupling 28 Chapter 3. Results and Discussions 29 3-1. Turbine Wake Characteristics 29 3-2. Streamwise velocity 30 3-3. Turbulence intensity 31 3-4. Momentum flux 33 Chapter 4. Conclusions 47 References 48

    1. 台灣電力公司. 台電106年各能源別發電量占比. 2017.
    2. EIS, W.E.D.P. Wind Energy and Wind Power. 2018.
    3. S. Lissaman, P.B., Energy Effectiveness of Arbitrary Arrays of Wind Turbines. Journal of Energy, 1979. 3(6): p. 323-328.
    4. Crespo, A., J. Hernandez, and S. Frandsen, Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms. Wind Energy, 1999: p. 2, 1-24.
    5. Chamorro, L.P. and F. Porté-Agel, A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects. Boundary-Layer Meteorology, 2009. 132(1): p. 129-149.
    6. Prospathopoulos, J.M., et al., Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions. Wind Energy, 2011. 14(2): p. 285-300.
    7. Chamorro, L.P., R.E.A. Arndt, and F. Sotiropoulos, Reynolds number dependence of turbulence statistics in the wake of wind turbines. Wind Energy, 2012. 15(5): p. 733-742.
    8. Wu, Y.-T. and F. Porté-Agel, Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study. Energies, 2012. 5(12): p. 5340-5362.
    9. Churchfield, M.J., et al., A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, 2012. 13.
    10. AbuBakr S Bahaj, L.E.M., Characterising the wake of horizontal axis marine current turbines. ResearchGate, 2006.
    11. Majid Bastankhah, F.P.e.-A., A wind-tunnel investigation of wind-turbine wakes in yawed conditions. Journal of Physics: Conference Series, 2015.
    12. ANSYS, I. 12.9.4 Inlet Boundary Conditions for the LES Model. 2009.
    13. Sergent, Vers une Méthodologie de Couplage entre la Simulation des Grandes Echelles et les Modèles Statistiques, in Thèse de doctorat en Mécanique. 2002.
    14. Fabric Mathey, J.-P.B., Davor Cokljat, Emmanuel Sergent, Specification of LES inlet boundary condition using vortex method. ResearchGate, 2006.
    15. Hsu, C.-M. and Y.-T. Wu, Characteristics of miniature turbine wakes under different tip speed ratios in the freestream flow condition. 2019.
    16. ANSYS, I. 7.3.2 Using Flow Boundary Conditions. 2009.
    17. ANSYS, I. 4.11.3 Subgrid-Scale Models. 2009.
    18. Kolmogorov, A., The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers. 1941. vol.30: p. Doklady Akademiia Nauk SSSR, vol.30, p.301-305.
    19. Abkar, M. and F. Porté-Agel, Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Physics of Fluids, 2015. 27: p. 035104

    下載圖示 校內:2024-07-24公開
    校外:2024-07-24公開
    QR CODE