| 研究生: |
蔡育展 Tsai, Yu-Zhan |
|---|---|
| 論文名稱: |
使用上發光架構且補償材料變異之有機發光二極體畫素電路設計 Employing Top Emission Structure and Compensating Material Variations for Pixel Circuit Design of AMOLED |
| 指導教授: |
林志隆
Lin, Chih-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 開口率 、主動式有機發光二極體 、畫素補償電路 、材料變異 |
| 外文關鍵詞: | VTH variation, pixel circuit, AMOLED, degradation, aperture ratio |
| 相關次數: | 點閱:78 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動式有機發光二極體顯示器畫素電路是由薄膜電晶體與電容所組成,由於製程上的差異使得元件的特性造成變異,如薄膜電晶體臨界電壓的漂移,導致驅動有機發光二極體的電流產生變化,造成面板亮度的不一致性。除此之外,有機發光二極體的老化所造成跨壓上升與發光亮度下降的現象亦會影響面板顯示品質。而開口率的大小亦決定發光的效率,使用上發光方式的架構因不受畫素內元件數目的限制,故比起下發光方式具有較高之開口率。
本論文針對上述問題提出三個新式畫素補償電路,除了改善面板亮度的不一致性,更利用上發光方式提高畫素開口率。第一個電路架構為4T1C畫素補償電路,此電路能夠補償薄膜電晶體元件特性的變異,且不受OLED 老化所影響,但訊號線過於複雜,製作不易。第二個補償電路亦為4T1C架構,利用簡單的控制訊號線,達到補償薄膜電晶體元件特性變異的效果。第三個電路架構採用外部補償電路機制,在畫素內維持3T1C架構,降低了製作的成本,並利用外部的補償電路補償薄膜電晶體與有機發光二極體元件的變異所造成亮度下降的情形。本論文提出的三個電路,均能改善顯示器因材料變異所導致不均勻的現象,亦提高畫素的開口率,增進發光效率,具有其應用價值。
The pixel circuit of an active matrix organic light-emitting diode (AMOLED) is composed of a capacitor and thin-film transistors (TFTs). As a result of different
fabrication processes, components characteristics such as TFT threshold voltage shift and OLED degradation will vary, indicating that an increase in OLED threshold voltage leads to non-uniformity luminance in panels. Additionally, aperture ratio also influences emitting
efficiency. Therefore, this study adopts a top emission structure to improve the aperture ratio and maintain uniform brightness.
This work proposes three novel pixel circuits to overcome problems associated with threshold voltage shift and OLED degradation. The first pixel circuit with 4T1C compensates for TFT threshold voltage variations and OLED degradation; however this circuit has complex control signal lines. The second circuit, composed of 4T1C, simplifies the control signals and effectively maintains uniform brightness. The third circuit with few elements in the pixel circuit reduces fabrication cost and compensates for material
variations via an external driving circuit. The proposed circuits improve brightness non-uniformity and enhance emitting efficiency. These circuits will contribute to
AMOLED applications in the future.
[1]S. Okutsu, T. Onikubo, M. Tamano, and T. Enokida, “Molecular design of hole transport material with various ionization potential for organic light-emitting diode applications,” IEEE Transactions on Electron Devices, vol.44, pp.1302–1306, Aug. 1997.
[2]R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, C. H. Chen, J. Shi, M. H. Lu, M. Moskewicz, J. C. Sturm, “A polysilicon active matrix organic light emitting diode display with integrated drivers,” SID International Symposium Proceedings, pp. 438–441, 1999.
[3]S. Forrest, P. Burrow, and M. Thompson, “The dawn of organic electronics,” IEEE Spectrum, pp. 29–34, Aug. 2000.
[4]J. L. Sanford, and E. S. Schlig, “Direct view active-matrix GA OLED on crystalline silicon display,” in SID Tech. Dig., pp. 376–379, 2001.
[5]M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, O. Prache, “Polysilicon VGA active matrix OLED displays technology and performance,” in IEDM Tech. Dig., pp. 871–874, 1998.
[6]C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “full-color organic EL display,” in SID Tech. Dig., pp. 7–10, 1998.
[7]A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Quantum Electronics, Vol. 10, No. 1, pp.107–114, Feb. 2004.
[8]A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, K. S. Karim, D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic, ” IEEE J. of Solid State Circuits, vol. 39, pp. 1477–1486, Sept. 2004.
[9]M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., vol.75, pp.4–6, 1999.
[10]M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys., Vol. 38, pp. 2042, 1963.
[11]C.W. Tang and S. Van Slyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., vol.51, p913–915, Sept. 1987.
[12]G. Gu and S. R. Forest, “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Sel. Topics Quantum Electron., vol. 4, pp. 83–99, Jan. 1998.
[13]Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., vol. 1, no.1, pp. 100–104, Sept. 2005.
[14]Y. Lin and H. P. D. Shieh, “A novel current memory circuit for AMOLEDs,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp.1037–1040, Jun. 2004.
[15]Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, pp. 590–592, Nov. 2000.
[16]M. Ohta, H. Tsutsu, H. Takahara, I. Kobayashi, T. Uemura, and Y. Takubo, “A novel current programmed pixel for active matrix OLED displays,” in Symp. Dig. SID, pp. 108–111, 2003.
[17]R. M. A. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R.G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C.W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., pp. 875–878, 1998.
[18]S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690–692,Oct. 2004.
[19]J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897–899, Dec. 2005.
[20]G. R. Chaji, and A. Nathan, “A stable voltage-programmed pixel circuit for a-Si:H AMOLED displays,” J. Display Technol., vol. 2, pp.347–358, Dec. 2006.
[21]S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, “VT compensation circuit for AMOLED displays composed of two TFTs and one capacitor,” IEEE Trans. Electron Devices, vol. 54, no. 3, pp. 462–467, Mar. 2007.
[22]C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007.
[23]A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for a-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, no.2, pp. 267–277, Dec. 2005.
[24]J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Invited: Comparison of a-Si and poly-Si for AMOLEDs,” in Proc. SID Tech. Dig., pp. 1504–1507, 2004.
[25]P. E. Burrow, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices,” Appl. Phys. Lett., vol. 76, no. 18, pp. 2493–2495, May. 2000.
[26]S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., vol. 3, no. 1, pp. 36-39, Mar. 2007.
[27]R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest, and J. J. Brown, “High operational stability of electrophosphorescent devices, ”App. Phys. Lett., vol. 81, no. 1, pp. 162–164, Jul. 2002.
[28]H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science, vol. 283, pp. 1900–1902, Mar. 1999.
[29]E. Lisuwandi, “Feedback circuit for organic LED active matrix display drivers,” Master's thesis, MIT, 2002.
[30]J. J. Yu, “A smart active matrix pixelated OLED display,” Master’s thesis, MIT, 2004.
[31]M. R. Powell, “Integrated feedback circuit for organic LED display driver,” Master’s thesis, MIT, 2004.
[32]T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display base on super top emission technology,” Jpn. J. Appl. Phys., vol. 45, pp. 4392–4395, 2006.
[33]M. H. M. Lu, M. Hack, R. Hewitt, M. S. Weaver, and J. J. Brown, “Power consumption and temperature increase in large area active-matrix OLED displays,” J. Display Technol., vol. 4, no. 1, pp. 47–53, Mar. 2008.
[34]T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura, and T. Urabe, “A 13.0-inch AMOLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),” in SID Tech. Dig., pp. 384–387, 2001.
[35]H. Y. Lu, P. T. Liu, T. C. Chang and S. Chi, “Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 743–745, Sept. 2006.
[36]H. Y. Lu, T. C. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays,” J. Display Technol., vol. 3, no. 4, pp. 398-403, Dec. 2007.
[37]G. R. Chaji, D. Striakhilev, and A. Nathan, “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs,” IEEE Electron Device Lett., vol. 26, no. 10, pp. 737–739, Oct. 2005.
[38]G. R. Chaj, and A. Nathan, “Parallel addressing scheme for voltage-programmed active-matrix OLED displays,” IEEE Trans. Electron Devices, vol. 54, no.5, pp. 1095–1100, May. 2007.
[39]C. L. Lin, T. T. Tsai, and Y.-C. Chen, “A novel voltage-feedback pixel circuit for AMOLED displays,” J. Display Technol., vol. 4, no. 1, pp. 54–60, Mar. 2008.
[40]J. C. Goh, K. S. Cho, and C. K. Kim, “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes, ” IEEE Electron Device Lett., vol. 24, no. 9, pp. 583–585, Sept. 2003.
[41]C. L. Lin and T. T. Tsai, “A novel voltage driving method using 3-TFT pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 6, pp. 489–491, Jun. 2007.
[42]Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 728–730, Nov. 2004.
[43]B. H. You, J. H. Lee, and M. K. Ha, “Polarity balanced driving scheme to suppress the degradation of Vth in a-Si:H TFT due to the positive gate bias stress for AMOLED,” J. Display Technol., vol. 3, no. 1, pp. 40–44, Mar. 2007.
[44]Y. Si, L. Lang, Y. Zhao, X. Chen and S. Liu, “Improvement of pixel electrode circuit for active-matrix OLEED by application of reversed-biased voltage”, IEEE Transactions on Circuits and Systems-II: Express Briefs, Vol. 52, pp. 856–859, Dec. 2005.