簡易檢索 / 詳目顯示

研究生: 陳敬中
Chen, Jing-Zhong
論文名稱: 一個單通道十二位元八千萬赫茲頻寬管線式雜訊整形連續漸進式類比數位轉換器
A Single-channel 74 dB-SNDR 80 MHz BW Pipelined Noise-Shaping SAR ADC
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 163
中文關鍵詞: 管線式類比數位轉換器三角積分調變器連續漸進式類比數位轉換器雜訊整形管線式雜訊整形之連續漸進式類比數位轉換器
外文關鍵詞: Pipelined ADC, Delta-Sigma Modulator (DSM), Successive Approximation Register (SAR) ADC, Noise shaping (NS), Pipelined Noise-Shaping SAR (Pi-NS-SAR) ADC
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 管線式雜訊整形連續漸進式類比數位轉換器同時結合了三角積分調變器和連續漸進式類比數位轉換器的優點,並透過管線式架構在速度、解析度與功耗表現上取得優勢。
    本論文提出一個利用兩個動態放大器同時實現管線級殘值放大與雜訊整形功能的類比數位轉換器,此架構確保了系統對放大器非理想效應的低敏感度。此外,第一級採用部分迴圈展開技術、非二進制電容權重及背景式補偏校正,使系統在高速操作下仍保有穩定性,且無須耗費大量功耗或面積。
    本設計以台積電 28 奈米 CMOS 製程進行晶片下線驗證。此晶片核心的電路面積為0.022 mm2。在1 V供應電壓、取樣頻率為320 MS/s 下,功耗為2.52 mW。針對 2 MHz (-0.3 dBFs) 輸入訊號,量測結果顯示 SNDR 為 70.1 dB,SFDR 為 87.9 dB, 並且DR為71.2 dB,實現了 172.1 dB 的FoMs 效能指標。為了證明所提出的類比數位轉換器架構對 PVT變化的穩健性,以不同供應電壓(±10%)和溫度(-40~100ºC) 對4顆晶片進行了性能測試,結果為約2 dB的SNDR差異。

    The Pipelined Noise-Shaping SAR (Pi-NS-SAR) ADCs combine the features of Delta-Sigma Modulators (DSM) and SAR ADCs, meanwhile, utilizing pipelined operation to achieve superior speed, resolution, and power efficiency.
    This thesis presents an ADC that realizes both residue amplification and the noise transfer function (NTF) simultaneously through two dynamic amplifiers. This approach ensures the system remains insensitive to the non-ideal effects of the amplifiers. Furthermore, the first stage incorporates partial loop-unrolling, non-binary CDAC weighting, and background offset calibration to guarantee stability during high-speed operation without significant power or area overhead.
    The prototype chip was fabricated in TSMC 28-nm technology with an active area of 0.022 mm2. Operating at a 320 MS/s sampling rate with a 1 V supply, the ADC consumes 2.52 mW. For a 2 MHz (-0.3 dBFs) input signal, the measured SNDR is 70.1 dB, the SFDR is 87.9 dB, and the dynamic range (DR) is 71.2 dB, achieving a Schrier Figure of Merit (FoMS) of 172.1 dB. To validate PVT robustness of the proposed ADC structure, four chips were tested across varying supply voltage (±10%) and temperature (-40~100ºC), showing an SNDR variation of only 2 dB.

    摘 要 I Abstract II Table of Contents V List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 ADC Figure of Merits and Trends 1 1.2 Organization of the Thesis 3 Chapter 2 Fundamentals of Analog-to-Digital Converter 4 2.1 Introduction 4 2.1.1 Quantization Error 5 2.1.2 Static Specifications 7 2.1.2.1 Offset Error 7 2.1.2.2 Gain Error 8 2.1.2.3 Nonlinearity Error 9 2.1.2.3.1 Differential Non-Linearity (DNL) 9 2.1.2.3.2 Integral Non-Linearity (INL) 10 2.1.3 Dynamic Specifications 11 2.1.3.1 Signal-to-Quantization Noise Ratio (SQNR) 11 2.1.3.2 Signal-to-Noise Ratio (SNR) 12 2.1.3.3 Total Harmonic Distortion (THD) 12 2.1.3.4 Signal-to-Noise and Distortion Ratio (SNDR) 13 2.1.3.5 Effective Number of Bits (ENOB) 14 2.1.3.6 Dynamic Range (DR) 14 2.1.3.7 Spurious-Free Dynamic Range (SFDR) 14 2.1.3.8 Effective Resolution Bandwidth (ERBW) 15 2.2 Nyquist-rate ADC 16 2.2.1 Sampling Theorem 16 2.2.2 Quantizer Topologies 18 2.2.2.1 Flash ADC 18 2.2.2.2 Pipeline ADC 20 2.2.2.3 SAR ADC 22 2.2.3 SAR ADC Building Blocks and Non-ideality Analysis 24 2.2.3.1 S/H 24 2.2.3.1.1 Clock Feedthrough 27 2.2.3.1.2 Charge Injection 27 2.2.3.2 Comparator 29 2.2.3.2.1 Comparator Speed 31 2.2.3.2.2 Comparator Noise 33 2.2.3.2.3 Comparator Offset 33 2.2.3.2.4 Kickback Noise 34 2.2.3.3 CDAC 35 2.2.3.3.1 Thermal Noise 35 2.2.3.3.2 CDAC Mismatch 36 2.2.3.4 Digital Logic 36 2.3 Oversampling ADC 38 2.3.1 Oversampling 38 2.3.2 Noise-shaping 40 2.3.3 Loop Filter Topologies 42 2.3.3.1 Feedback Topology 42 2.3.3.2 Feedforward Topology 44 2.3.4 MASH Structure 46 2.3.4.1 Conventional MASH Structure 46 2.3.4.2 Sturdy-MASH Structure 47 2.3.5 Nosie-coupled Architecture 48 2.3.6 Discrete-time and Continuous-time DSM 49 2.3.6.1 Discrete-time DSM 49 2.3.6.2 Continuous-time DSM 50 2.3.6.3 Comparison of DT-DSM and CT-DSM 52 Chapter 3 Fundamentals of Noise-Shaping SAR ADC and Pipelined-SAR ADC 53 3.1 Hybrid ADC Research Trends 53 3.2 Noise-shaping SAR ADC 54 3.2.1 Loop Filter Improve Technique 55 3.2.1.1 Loop Filter Architecture 55 3.2.1.1.1 CIFF Architecture 56 3.2.1.1.2 EF Architecture 57 3.2.1.2 Signal Summation 58 3.2.1.2.1 Multi-input Comparator 58 3.2.1.2.2 Charge Sharing 59 3.2.1.2.3 Capacitor Stacking 59 3.2.1.3 Loop Filter Gain Stage Design 60 3.2.1.3.1 Closed-loop Amplifier 60 3.2.1.3.2 Fully Passive 61 3.2.1.3.3 Open-loop Amplifier 61 3.2.1.4 Noise-shaping Order Extension 62 3.2.2 CDAC linearity Enhance Technique 63 3.2.2.1 Dynamic Element Matching 63 3.2.2.2 Mismatch Error Shaping 64 3.2.2.3 Foreground Calibration 66 3.2.3 Input Driving and Noise Reduction Technique 67 3.2.4 Time Interleaved Technique 67 3.3 Pipelined-SAR ADC 70 3.3.1 OPAMP Sharing Technique 70 3.3.2 Dynamic Amplifier Technique 71 3.3.2.1 Zero-Crossing-Based Circuits (ZCBC) 72 3.3.2.2 Ring Amplifier 73 3.3.2.3 Floating Inverter Amplifier 75 3.3.4 Auxiliary Technique 77 3.4 Pipelined Noise Shaping SAR ADC 78 Chapter 4 A Single-channel 74 dB-SNDR 80 MHz-BW Pipelined Noise-Shaping SAR ADC 79 4.1 introduction 79 4.1.1 Design Target 79 4.1.2 Potential Architectures 80 4.1.3 State-of-the-Art Design 83 4.1.3.1 TI-NS-SAR ADC 83 4.1.3.2 Pi-NS-SAR ADC 84 4.1.4 Reference Work Analysis 85 4.2 Proposed Architecture 87 4.3 System Level Design 93 4.3.1 Speed Considerations 93 4.3.2 Resolution Considerations 95 4.3.3 Robustness Considerations 97 4.3.3.1 First Stage 97 4.3.3.2 EF Filter 98 4.3.3.3 Residue Amplifier 100 4.4 Circuit Level Design 103 4.4.1 Switch 103 4.4.2 Comparator 105 4.4.3 Digital Control Logic 107 4.4.4 Residue Amplifier 108 4.4.5 CDAC Array 110 4.4.6 LVDS 112 Chapter 5 Simulation and Measurement Results 113 5.1 Layout Floor Plan 113 5.2 Simulation Results 116 5.2.1 Behavioral Model Simulation Results 116 5.2.2 Pre-layout Simulation Results 118 5.2.3 Post-layout Simulation Results 120 5.3 Chip Micrograph and Measurement Setup 124 5.4 Measurement Results 127 5.5 Problem & discussion 131 5.5.1 Output Buffer 131 5.5.2 Interstage Gain Error 133 Chapter 6 Conclusion and Future Works 134 6.1 Conclusion 134 6.2 Future Works 135 Bibliography 136

    [1] B. Murmann, “ADC Performance Survey 1997-2025,” [Online]. Available: https://github.com/bmurmann/ADC-survey
    [2] S. Pavan, R. Schreier, G. C. Temes, and R. Schreier, Understanding delta-sigma data converters, 2017.
    [3] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, Jul. 1948.
    [4] S. Verma et al., “A 10.3GS/s 6b flash ADC for 10G Ethernet applications,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2013, pp. 462-463.
    [5] V. H. -C. Chen and L. Pileggi, “A 69.5mW 20GS/s 6b time-interleaved ADC with embedded time-to-digital calibration in 32nm CMOS SOI,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2014, pp. 380-381.
    [6] M. Miyahara, I. Mano, M. Nakayama, K. Okada and A. Matsuzawa, “A 2.2GS/s 7b 27.4mW time-based folding-flash ADC with resistively averaged voltage-to-time amplifiers,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2014, pp. 388-389
    [7] B. Murmann and B. E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, Dec. 2003.
    [8] A. N. Karanicolas, Hae-Seung Lee and K. L. Barcrania, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” in IEEE Journal of Solid-State Circuits, vol. 28, no. 12, pp. 1207-1215, Dec. 1993.
    [9] J. Brunsilius et al., “A 16b 80MS/s 100mW 77.6dB SNR CMOS pipeline ADC,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2011, pp. 186-188.
    [10] S. Gupta, M. Choi, M. Inerfield and Jingbo Wang, “A 1GS/s 11b Time-Interleaved ADC in 0.13µm CMOS,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2006, pp. 2360-2369.
    [11] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq and G. Van der Plas1, “A 2.6mW 6b 2.2GS/s 4-times interleaved fully dynamic pipelined ADC in 40nm digital CMOS,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2010, pp. 296-297.
    [12] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits, 2001.
    [14] A. Abidi and H. Xu, “Understanding the regenerative comparator circuit,” IEEE Custom Integrated Circuits Conference (CICC) Digest of Technical Papers, San Jose, CA, USA, 2014, pp. 1-8.
    [15] T. Kobayashi et al., ‘‘A current-controlled latch sense amplifier and a static power saving input buffer for low-power architecture,’’ IEEE Journal of Solid-State Circuits, vol. 28, no. 4, pp. 523–527, April 1993.
    [16] B. Wicht et al., “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE Journal Solid-State Circuits, vol. 39, no. 7, pp. 1148−1158, Jul. 2004.
    [17] P. Nuzzo et al., “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1441–1454, Jul. 2008.
    [18] C. C. Lee and M. P. Flynn, “A SAR-Assisted Two-Stage Pipeline ADC,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 859-869, Apr. 2011.
    [19] J. A. Fredenburg and M. P. Flynn, “A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC,” IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2898-2904, Dec. 2012.
    [20] H. Omran, H. Alahmadi and K. N. Salama, “Matching Properties of Femtofarad and Sub-Femtofarad MOM Capacitors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 6, pp. 763-772, Jun. 2016.
    [21] L. Jie et al., “An Overview of Noise-Shaping SAR ADC: From Fundamentals to the Frontier,” IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 149-161, 2021.
    [22] Z. Chen, M. Miyahara and A. Matsuzawa, “A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain,” IEEE Asian Solid-State Circuits Conference (A-SSCC) Digest of Technical Papers, Toyama, Japan, 2016, pp. 309-312.
    [23] Z. Chen, M. Miyahara and A. Matsuzawa, “A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Kyoto, Japan, 2015, pp. C64-C65.
    [24] W. Guo and N. Sun, “A 12b-ENOB 61µW noise-shaping SAR ADC with a passive integrator,” European Solid-State Circuits Conference (ESSCIRC Conference) Digest of Technical Papers, Lausanne, Switzerland, 2016, pp. 405-408.
    [25] W. Guo, H. Zhuang and N. Sun, “A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Kyoto, Japan, 2017, pp. C236-C237.
    [26] Y. -Z. Lin, C. -H. Tsai, S. -C. Tsou, R. -X. Chu and C. -H. Lu, “A 2.4-mW 25-MHz BW 300-MS/s passive noise shaping SAR ADC with noise quantizer technique in 14-nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Kyoto, Japan, 2017, pp. C234-C235.
    [27] C. -C. Liu and M. -C. Huang, “A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2017, pp. 466-467.
    [28] M. Miyahara and A. Matsuzawa, “An 84 dB dynamic range 62.5–625 kHz bandwidth clock-scalable noise-shaping SAR ADC with open-loop integrator using dynamic amplifier,” IEEE Custom Integrated Circuits Conference (CICC) Digest of Technical Papers, Austin, TX, USA, 2017, pp. 1-4.
    [29] Y. -Z. Lin, C. -Y. Lin, S. -C. Tsou, C. -H. Tsai and C. -H. Lu, “A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation in 14nm FinFET,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2019, pp. 330-332.
    [30] X. Tang et al., “A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier,” IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020.
    [31] J. Liu, D. Li, Y. Zhong, X. Tang and N. Sun, “A 250kHz-BW 93dB-SNDR 4th-Order Noise-Shaping SAR Using Capacitor Stacking and Dynamic Buffering,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2021, pp. 369-371.
    [32] K. -C. Cheng, S. -J. Chang, C. -C. Chen and S. -H. Hung, “A 94.3dB SNDR 184dB FoMs 4th-Order Noise-Shaping SAR ADC with Dynamic-Amplifier-Assisted Cascaded Integrator,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2024, pp. 180-182.
    [33] S. Li, B. Qiao, M. Gandara, D. Z. Pan and N. Sun, “A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure,” IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3484-3496, Dec. 2018.
    [34] L. Jie, B. Zheng, H. -W. Chen and M. P. Flynn, “A Cascaded Noise-Shaping SAR Architecture for Robust Order Extension,” IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3236-3247, Dec. 2020.
    [35] T. -H. Wang, R. Wu, V. Gupta, X. Tang and S. Li, “A 13.8-ENOB Fully Dynamic Third-Order Noise-Shaping SAR ADC in a Single-Amplifier EF-CIFF Structure with Hardware-Reusing kT/C Noise Cancellation,” IEEE Journal of Solid-State Circuits, vol. 56, no. 12, pp. 3668-3680, Dec. 2021.
    [36] T. Xie, T. -H. Wang, Z. Liu and S. Li, “An 84-dB-SNDR Low-OSR Fourth-Order Noise-Shaping SAR With an FIA-Assisted EF-CRFF Structure and Noise-Mitigated Push-Pull Buffer-in-Loop Technique,” IEEE Journal of Solid-State Circuits, vol. 57, no. 12, pp. 3804-3815, Dec. 2022.
    [37] K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto and K. Sushihara, “A 97.99 dB SNDR, 2 kHz BW, 37.1 µW noise-shaping SAR ADC with dynamic element matching and modulation dither effect,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Honolulu, HI, USA, 2016, pp. 1-2.
    [38] K. L. Chan, N. Rakuljic and I. Galton, “Segmented Dynamic Element Matching for High-Resolution Digital-to-Analog Conversion,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3383-3392, Dec. 2008.
    [39] R. T. Baird and T. S. Fiez, “Linearity enhancement of multibit A/D and D/A converters using data weighted averaging,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 753-762. Dec. 1995.
    [40] N. Sun, “High-Order Mismatch-Shaping in Multibit DACs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 6, pp. 346-350, Jun. 2011.
    [41] Y. -S. Shu, L. -T. Kuo and T. -Y. Lo, “An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2928-2940, Dec. 2016.
    [42] J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang and N. Sun, “A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping, ” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2020, pp. 158-160.
    [43] Y. Shen, H. Li, H. Xin, E. Cantatore and P. Harpe, “A 103-dB SFDR Calibration-Free Oversampled SAR ADC With Mismatch Error Shaping and Pre-Comparison Techniques,” IEEE Journal of Solid-State Circuits, vol. 57, no. 3, pp. 734-744, Mar. 2022.
    [44] Y. Shen, H. Li, H. S. Bindra, E. Cantatore and P. Harpe, “A 14-Bit Oversampled SAR ADC With Mismatch Error Shaping and Analog Range Compensation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 5, pp. 1719-1723, May 2023.
    [45] H. Garvik, C. Wulff and T. Ytterdal, “An 11.0 bit ENOB, 9.8 fJ/conv.-step noise-shaping SAR ADC calibrated by least squares estimation,” IEEE Custom Integrated Circuits Conference (CICC) Digest of Technical Papers, Austin, TX, USA, 2017, pp. 1-4.
    [46] H. Garvik, C. Wulff and T. Ytterdal, “A 68 dB SNDR Compiled Noise-Shaping SAR ADC With On-Chip CDAC Calibration,” IEEE Asian Solid-State Circuits Conference (A-SSCC) Digest of Technical Papers, Macau, Macao, 2019, pp. 193-194.
    [47] J. S. Yoon, J. Hong and J. Kim, “A Digitally-Calibrated 70.98dB-SNDR 625kHz-Bandwidth Temperature-Tolerant 2nd-order Noise-Shaping SAR ADC in 65nm CMOS,” IEEE Asian Solid-State Circuits Conference (A-SSCC) Digest of Technical Papers, Macau, Macao, 2019, pp. 195-196
    [48] J. Liu, X. Tang, W. Zhao, L. Shen and N. Sun, “A 13-bit 0.005-mm2 40-MS/s SAR ADC With kT/C Noise Cancellation,” IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3260-3270, Dec. 2020.
    [49] K. Lee et al., “A Noise-Coupled Time-Interleaved Delta-Sigma ADC With 4.2 MHz Bandwidth, − 98 dB THD, and 79 dB SNDR,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2601-2612, Dec. 2008.
    [50] L. Jie, B. Zheng and M. P. Flynn, “A 50MHz-Bandwidth 70.4dB-SNDR Calibration-Free Time-Interleaved 4th-Order Noise-Shaping SAR ADC,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2019.
    [51] H. Zhuang, J. Liu and N. Sun, “A Fully-Dynamic Time-Interleaved Noise-Shaping SAR ADC Based on CIFF Architecture,” IEEE Custom Integrated Circuits Conference (CICC) Digest of Technical Papers, Boston, MA, USA, 2020.
    [52] C. -Y. Lin, Y. -Z. Lin, C. -H. Tsai and C. -H. Lu, “An 80MHz-BW 640MS/s Time-Interleaved Passive Noise-Shaping SAR ADC in 22nm FDSOI Process,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2021.
    [53] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis and R. G. Renninger, “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers,” IEEE Journal of Solid-State Circuits, vol. 32, no. 3, pp. 312-320, Mar. 1997.
    [54] Byung-Moo Min, P. Kim, F. W. Bowman, D. M. Boisvert and A. J. Aude, “A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2031-2039, Dec. 2003.
    [55] Y. -C. Huang and T. -C. Lee, “A 10-bit 100-MS/s 4.5-mW Pipelined ADC With a Time-Sharing Technique,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 6, pp. 1157-1166, Jun. 2011.
    [56] X. He, M. Gu, H. Jiang, Y. Zhong, N. Sun and L. Jie, “A 71dB SNDR 200MHz BW Interleaved Pipe-SAR ADC with a Shared Residue Integrating Amplifier Achieving 173dB FoMs,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2024, pp. 172-174.
    [57] J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini and H. -S. Lee, “Comparator-Based Switched-Capacitor Circuits for Scaled CMOS Technologies,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2658-2668, Dec. 2006.
    [58] L. Brooks and H. -S. Lee, “A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2677-2687, Dec. 2007.
    [59] L. Brooks and H. -S. Lee, “A 12b, 50 MS/s, Fully Differential Zero-Crossing Based Pipelined ADC,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3329-3343, Dec. 2009.
    [60] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita and U. -K. Moon, “Ring Amplifiers for Switched Capacitor Circuits,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2928-2942, Dec. 2012.
    [61] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita and U. -K. Moon, “A 61.5dB SNDR pipelined ADC using simple highly-scalable ring amplifiers,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Honolulu, HI, USA, 2012, pp. 32-33.
    [62] B. Hershberg and U. -K. Moon, “A 75.9dB-SNDR 2.96mW 29fJ/conv-step ringamp-only pipelined ADC,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Kyoto, Japan, 2013, pp. C94-C95.
    [63] Y. Lim and M. P. Flynn, “A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers,” IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2331-2341, Oct. 2015.
    [64] Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2901-2911, Dec. 2015.
    [65] Y. Lim and M. P. Flynn, “A calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s four-stage fully differential ring amplifier based SAR-assisted pipeline ADC,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Kyoto, Japan, 2017, pp. C98-C99.
    [66] X. Tang et al., “An Energy-Efficient Comparator With Dynamic Floating Inverter Amplifier,” in IEEE Journal of Solid-State Circuits, vol. 55, no. 4, pp. 1011-1022, Apr. 2020.
    [67] X. Tang et al., “A 0.4-to-40MS/s 75.7dB-SNDR Fully Dynamic Event-Driven Pipelined ADC with 3-Stage Cascoded Floating Inverter Amplifier,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2021, pp. 376-378.
    [68] B. R. Gregoire and U. -K. Moon, “An Over-60 dB True Rail-to-Rail Performance Using Correlated Level Shifting and an Opamp With Only 30 dB Loop Gain,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2620-2630, Dec. 2008.
    [69] S. Song, T. Kang, S. Lee and M. P. Flynn, “A 150-MS/s Fully Dynamic SAR-Assisted Pipeline ADC Using a Floating Ring Amplifier and Gain-Enhancing Miller Negative-C,” IEEE Open Journal of the Solid-State Circuits Society, vol. 5, pp. 145-156, 2025.
    [70] Y. Song, Y. Zhu, C. H. Chan and R. P. Martins, “A 2.56mW 40MHz-Bandwidth 75dB-SNDR Partial-Interleaving SAR-Assisted NS Pipeline ADC With Background Inter-Stage Offset Calibration,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2020, pp. 164-166.
    [71] S. Oh et al., “An 85 dB DR 4 MHz BW Pipelined Noise-Shaping SAR ADC With 1–2 MASH Structure,” IEEE Journal of Solid-State Circuits, vol. 56, no. 11, pp. 3424-3433, Nov. 2021.
    [72] Y. Zhang et al., “A Single-Channel 70dB-SNDR 100MHz-BW 4th-Order Noise-Shaping Pipeline SAR ADC with Residue Amplifier Error Shaping,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2023, pp. 9-11.
    [73] C. -K. Hsu, T. R. Andeen and N. Sun, “A Pipeline SAR ADC With Second-Order Interstage Gain Error Shaping,” IEEE Journal of Solid-State Circuits, vol. 55, no. 4, pp. 1032-1042, April 2020.
    [74] C. -K. Hsu et al., “A 77.1-dB-SNDR 6.25-MHz-BW Pipeline SAR ADC With Enhanced Interstage Gain Error Shaping and Quantization Noise Shaping,” IEEE Journal of Solid-State Circuits, vol. 56, no. 3, pp. 739-749, March 2021.
    [75] H. Zhang, Y. Zhu, C. -H. Chan and R. P. Martins, “A 25MHz-BW 75dB-SNDR Inherent Gain Error Tolerance Noise-Shaping SAR-Assisted Pipeline ADC with Background Offset Calibration,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2021.
    [76] H. Zhang, Y. Zhu, C. -H. Chan and R. P. Martins, “A 25MHz-BW 77.2dB-SNDR 2nd-Order Gain-Error-Shaping and NS Pipelined SAR ADC Based on a Quantization-Prediction-Unrolled Scheme,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2023, pp. 174-176.
    [77] Y. -H. Wang and S. -J. Chang, “A 7b 4.5GS/s 4× Interleaved SAR ADC with Fully On-Chip Background Timing Skew Calibration,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2023, pp. 16-18.
    [78] C. -C. Liu, C. -H. Kuo and Y. -Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
    [79] C. -C. Liu, S. -J. Chang, G. -Y. Huang, Y. -Z. Lin and C. -M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits) Digest of Technical Papers, Honolulu, HI, USA, 2010, pp. 241-242.
    [80] M. Gu, Y. Tao, X. He, Y. Zhong, L. Jie and N. Sun, “A 1-GS/s 11-b Time-Interleaved SAR ADC With Robust, Fast, and Accurate Autocorrelation-Based Background Timing-Skew Calibration,” IEEE Journal of Solid-State Circuits, vol. 60, no. 2, pp. 421-431, Feb. 2025.

    QR CODE