研究生: |
游漢威 Henry, Yew |
---|---|
論文名稱: |
氯烯類污染場址中脫氯微生物社群、功能性基因和地化參數的動態變化之研究 Dynamic of dechlorinated microbial community, functional genes, and geochemical parameters in chloroethenes contaminated sites |
指導教授: |
林財富
Lin, Tsair-Fuh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 生物刺激法 、生物復育潛能 、氯乙烯 、專家系統 、含有機鹵化物降解之微生物社群 、SybrGreen-qPCR 定量法 |
外文關鍵詞: | Biostimulation, Bioremediation potential, Chloroethenes, Expert system, OHRB-containing community, SybrGreen-qPCR quantification |
相關次數: | 點閱:61 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含氯乙烯類化合物為國內外土壤與地下水中常見的污染物質,而厭氧脫鹵程序為目前重要的生物復育法之一。於此程序中,Dehalococcoides屬在還原四氯乙烯(PCE)至無害的乙烯(ETH)中扮演關鍵性的角色,而還原脫鹵酵素(RDase)的分析則有助於進一步地了解氯乙烯類化合物的降解路徑。此外,參與脫氯反應的其他的功能性微生物與微生物社會能提供建立基質降解網絡的完整性資訊。本研究目的為利用次世代定序法(NGS)來解析位於台灣四個污染場址中的微生物社群組成,與利用以DNA為生物標記的SybrGreen-qPCR法定量在執行生物復育約1年的兩個場址中、不同時期的8種功能性微生物與4種RDase基因。首先,NGS結果顯示完整性與含有機鹵化物(OHRB)降解之微生物社群與污染場址特性具有高度的相關性。
在受四氯乙烯污染的場址一中,添加EcoClean藥劑有助於增殖或活化功能性微生物的增長與基因表現。Desulfitobacterium和Dehalococcoides屬分別負責PCE降解和轉換三氯乙烯(TCE)至氯乙烯(VC)。 統計分析結果顯示,溶氧(DO)與總有機碳(TOC)和氯烯類化合物中氯分子數的分解具有高度的相關性。 而在另一個受三氯乙烯(TCE)污染的場址六中,添加SL-90SRW藥劑能誘發tceA和bvcA基因的表現來進行順-1,2-二氯乙烯(cis-1,2-DCE)的降解。於此系統中,Dehalococcoides屬在生物復育後期被觀察到取代原生的Desulfitobacterium屬。
在生物復育潛能方面,當現地污染場址中Dehalococcoides屬具有3.2510-3 fmole/cell-day的降解速率時能達到50%的生物復育可能性。相對於在經兩年優勢培養的系統中,Dehalococcoides屬具有76%的去除能力於5個月的測試期中降解10 μM的三氯乙烯濃度。進一步探討本研究所檢測的所有參數,分析66個有效數據的結果顯示,溶氧為發生還原脫氯反應的關鍵因子,且Clostridia綱為活化OHRB家族中RDase表現的重要能量供應者。 而共發生分析的結果再次證明Dehalococcoides屬中tceA 和 vcrA基因為最重要的RDase酵素來催化存在於台灣各場址中氯烯類物種的轉換。
最後,本研究所發展的專家系統,結合現地場址背景參數與微生物資訊,在生物復育效率的評估方面提供一個嶄新的視野,期待未來能幫助現地操作者制定有用的整治策略來去除環境中殘留的有毒化合物。
Chlorinated ethenes are an important class of contaminants present in the soil and groundwater sites. Bioremediation with anaerobic dehalogenation is a promising method for chloroethenes degradation. Genus Dehalococcoides plays a critical role in reduction of tetrachloroethene (PCE) to harmless ethene (ETH). Furthermore, several reductive dehalogenases (RDase) extracted from genus Dehalococcoides may provide the important message for chloroethenes degradation pathway. In addition, other functional microbes and microbial community involved in the dechlorination give the comprehensive information for establishment of substrate degrading network.
This study aimed to clarify the composition of comprehensive communities in four contaminated sites distributed in Taiwan using next-generation sequencing (NGS) analysis. In addition, this study also used SybrGreen-qPCR method with DNA biomarker to quantify the population and abundance of 8 functional microbes and 4 RDase genes in two contaminated sites during about 1 year and different stages of bioremediation. NGS results showed that the distribution of comprehensive and OHRB-containing communities displayed high correlation with the properties of contaminated sites.
In the case of site I contaminated with PCE, addition of EcoClean benefited to enlarge or activate the growth of functional microbes and gene expression. Genera Desulfitobacterium and Dehalococcoides were responsible for transformation of PCE to trichloroethylene (TCE) and TCE to vinyl chloride (VC), respectively. Statistical analyses showed that both dissolved oxygen (DO) and total organic carbon (TOC) had high correlation with the decomposition of chloroethenes. In another case of site VI contaminated with TCE, addition of SL-90SRW induced the expression of tceA and bvcA genes, resulting in further dechlorination of cis-1-2-DCE. Moreover, genus Dehalococcoides replaced genus Desulfitobacterium in the site after latter period of bioremediation.
For bioremediation potential, 50% probability was attained when Dehalococcoides population performed the degradation rate of 3.2510-3 fmole/cell-day in the field site. To fit the result of 2-year enriched culture, genus Dehalococcoides had the capability of 76% removal probability to degrade TCE concentration of 10 μM within 5 months. To further investigate the occurrence frequency of all indicators determined in this study, 66 effective data showed that DO was the key factor for occurrence of reductive dechlorination and class Clostridia was the important donor for activation of RDase expression in the OHRB family. Results of co-occurrence analysis proved again that both of tceA and vcrA genes in genus Dehalococcoides were the most important RDase to catalyze the transformation of chlorinated species in Taiwan.
Finally, the expert system developed in this study provided a new insight in the evaluation of bioremediation efficiency, in combination of background geochemical parameters and microbial information. It may serve as a useful tool for the managers and engineers to determine the remediation strategies and plans for the clean-up of chloroethene-contaminated sites.
Adrian, L., & Löffler, F. E. (2016). Organohalide Respiring Bacteria. Springer, Berlin.
Akladiss, N., Faris, B., Hadley, P., Hausamann, E., Shirazi, G. A., & Syverson, L. (2005). Overview of in situ bioremediation of chlorinated ethene DNAPL source zones. The Interstate Technology and Regulatory Council, Washington, DC.
Amann, R. and B. M. Fuchs (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Reviews and Microbiology, 6, 339-348.
ATSDR (1994). Agency for Toxic Substances and Disease Registry. Toxicological profile for 1,2-dichloroethene. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
ATSDR (1996). Agency for Toxic Substances and Disease Registry. Toxicological profile for Vinyl Chloride. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
ATSDR (2006). Agency for Toxic Substances and Disease Registry. Toxicological profile for Trichloroethylene. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
ATSDR (2014). Agency for Toxic Substances and Disease Registry. Toxicological profile for Tetrachloroethylene. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media: San Jose, California.
Behrens, S., Azizian, M. F., McMurdie, P. J., Sabalowsky, A., Dolan, M. E., Semprini, L., & Spormann, A. M. (2008). Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Applied and Environmental Microbiology, 74(18), 5695-5703.
Borden, R. C. (2006). Protocol for enhanced in situ bioremediation using emulsified edible oil. Solutions Industrial and Environmental Services Raleigh NC.
Bradley, P.M., Chapelle, F.H. (1996). Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environmental Science and Technology 30, 2084–2086.
Bradley, P. M., Landmeyer, J. E., & Dinicola, R. S. (1998a). Anaerobic oxidation of [1, 2-14C] dichloroethene under Mn (IV)-reducing conditions. Applied and Environmental Microbiology, 64(4), 1560-1562.
Bradley, P. M., & Chapelle, F. H. (1998b). Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe, 4(2), 81-87.
Bradley, P. M. (2003). History and ecology of chloroethene biodegradation: a review. Bioremediation Journal, 7(2), 81-109.
Caporaso, J.G., J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld and R. Knight. (2010). QIIME Allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336.
Chapelle, F. H. (1996). Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems. In: Symposium on natural attenuation of chlorinated organics in groundwater, pp. 17–20. EPA/540/R-96/509.
Chen W-F, Lu H-Y, & Liu T-K (2000). The Redox Condition and Arsenic Concentration in Groundwater of Taiwan. Journal of Taiwan Agricultural Engineering, 56(2), P57-70.
Cohen, R. M., & Mercer, J. W. (1993). DNAPL Site Investigation. CK Smoley, Boca Raton, Florida.
Cupples, A.M. (2008). Real-time PCR quantification of Dehalococcoides populations: Methods and applications. Journal of Microbiological Methods 72, 1–11.
Delgado, A.G., Fajardo-Williams, D., Popat, S.C., Torres, C.I., Krajmalnik-Brown, R. (2014). Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Applied Microbiology and Biotechnology 98, 2729–2737.
Ding, C., Zhao, S., He, J. (2014). A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environmental Microbiology 16, 3387–3397.
DiStefano, T.D., Gossett, J.M., Zinder, S.H., DiStefano TD, G.J.Z.S. (1991). Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Applied and Environmental Microbiology 57, 2287–2292.
Doherty, R. E. (2000). A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: Part 1-historical background; carbon tetrachloride and tetrachloroethylene. Environmental Forensics, 1(2), 69-81.
Duhamel, M., Wehr, S.D., Yu, L., Rizvi, H., Seepersad, D., Dworatzek, S., Cox, E.E., Edwards, E.A. (2002). Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Research 36, 4193–4202.
Duhamel, M., Mo, K., & Edwards, E. A. (2004). Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Applied and Environmental Microbiology, 70(9), 5538-5545.
Duhamel, M., & Edwards, E. A. (2006). Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiology Ecology, 58(3), 538-549.
Eckert, K. A. and T. A. Kunkel (1991) DNA polymerase fidelity and the polymerase chain reaction. Genome Res., 1, 17-24.
Edgar, R.C. (2013). UPARSE: Highly Accurate OUT Sequences from Microbial Amplicon Reads. Nature Methods, 10, 996-998.
Eisen, J. A. (2007). Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biology, 5(3), e82.
Ellis, D.E., Lutz, E.J., Odom, J.M., Buchanan, R.J., Bartlett, C.L., Lee, M.D., Harkness, M.R., Deweerd, K.A. (2000). Bioaugmentation for accelerated in situ anaerobic bioremediation. Environmental Science and Technology, 34, 2254–2260.
Fazi, S., Amalfitano, S., Pizzetti, I., & Pernthaler, J. (2007). Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content. Systematic and Applied Microbiology, 30(6), 463-470.
Fazi, S., Aulenta, F., Majone, M., & Rossetti, S. (2008). Improved quantification of Dehalococcoides species by fluorescence in situ hybridization and catalyzed reporter deposition. Systematic and Applied Microbiology, 31(1), 62-67.
Fennell, D.E., Gossett, J.M. (1998). Modeling the production of and competition for hydrogen in a dechlorinating culture. Environmental Science and Technology, 32:2450–60
Fennell, D. E., Nijenhuis, I., Wilson, S. F., Zinder, S. H., & Häggblom, M. M. (2004). Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science and Technology, 38(7), 2075-2081.
Finneran, K.T., Forbush, H.M., Gaw VanPraagh, C.V., Lovley, D.R. (2002). Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds. International Journal of Systematic and Evolutionary Microbiology 52, 1929–1935.
Futagami, T., Goto, M., & Furukawa, K. (2008). Biochemical and genetic bases of dehalorespiration. The chemical record, 8(1), 1-12.
George, I., Stenuit, B., Agathos, S., & Marco, D. (2010). Application of metagenomics to bioremediation. Metagenomics: Theory, Methods and Applications, 1, 119-140.
Gerritse, J., Renard, V., Gomes, T.M.P., Lawson, P.A., Collins, M.D., Gottschal, J.C. (1996). Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho -chlorinated phenols. Archives of Microbiology 165, 132–140.
Gribble, G. W. (1992). Naturally occurring organohalogen compounds a survey. Journal of natural products, 55(10), 1353-1395.
Gribble, G. W. (1994). The natural production of chlorinated compounds. Environmental Science and Technology, 28(7), 310A-319A.
Hartmans, S. (1995). Microbial degradation of vinyl chloride. Progress in Industrial Microbiology, 32, 239-248.
Haston, Z.C., Mccarty, P.L. (1999). Chlorinated ethene half-velocity coefficients (K(s)) for reductive dehalogenation. Environmental Science and Technology 33, 223–226.
He, J., Sung, Y., Dollhopf, M. E., Fathepure, B. Z., Tiedje, J. M., & Löffler, F. E. (2002). Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environmental Science and Technology, 36(18), 3945-3952.
He, J., Ritalahti, K. M., Aiello, M. R., & Löffler, F. E. (2003). Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology, 69(2), 996-1003.
He, J., Sung, Y., Krajmalnik‐Brown, R., Ritalahti, K. M., & Löffler, F. E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE) and 1,2‐dichloroethene‐respiring anaerobe. Environmental Microbiology, 7(9), 1442-1450.
Holland, P. M., R. D. Abramson, R. Watson and D. H. Gelfand (1991) Detection of specific polymerase chain reaction product by utilizing the 5’to 3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acd. Sci. USA, 88, 7276-7280.
Hsueh, H-T. (2016). Trend study of academic research on soil and groundwater remediation by co-word analysis. 3rd International conference on contaminated land, ecological assessment and remediation.
Hug, L.A., Beiko, R.G., Rowe, A.R., Richardson, R.E., Edwards, E.A. (2012). Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BioMed Central, Genomics 13.
Hung, C., Cheng, C., Cheng, L., Liang, C., Lin, C. (2008). Application of Clostridium -specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community. International Journal of Hydrogen Energy, 33, 1586–1592.
ITRC (2008). Interstate Technology and Regulatory Council. In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones.
Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (Vol. 5, No. 8). Upper Saddle River, NJ: Prentice Hall.
Kanitkar, Y. H., Stedtfeld, R. D., Steffan, R. J., Hashsham, S. A., & Cupples, A. M. (2016). Loop-Mediated Isothermal Amplification (LAMP) for rapid detection and quantification of Dehalococcoides biomarker genes in commercial reductive dechlorinating cultures KB-1 and SDC-9. Applied and Environmental Microbiology, 82(6), 1799-1806.
Kanitkar, Y. H., Stedtfeld, R. D., Hatzinger, P. B., Hashsham, S. A., & Cupples, A. M. (2017). Development and application of a rapid, user-friendly, and inexpensive method to detect Dehalococcoides sp. reductive dehalogenase genes from groundwater. Applied Microbiology and Biotechnology, 1-9.
Keppler, F., Borchers, R., Pracht, J., Rheinberger, S., & Schöler, H. F. (2002). Natural formation of vinyl chloride in the terrestrial environment. Environmental Science and Technology, 36(11), 2479-2483.
Kim, A.D., Mandelco, L., Tanner, R.S., Woese, C.R., Suflita, J.M. (1990). Desulfomonile tiedjei. Arch Microbiol (1990) 154:23-30 23–30.
Klindworth, A., E. Priesse, T. Schweer, J. Peplies, C. Quast, M. Horn and F.O. Glöckner. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res., 41(1), e1.
Krajmalnik-Brown, R., Hölscher, T., Thomson, I. N., Saunders, F. M., Ritalahti, K. M., & Löffler, F. E. (2004). Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Applied and Environmental Microbiology, 70(10), 6347-6351.
Kranzioch, I., Ganz, S., & Tiehm, A. (2015). Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments. Environmental Science and Pollution Research, 22(4), 3138-3148.
Lebrón, C. A., Petrovskis, E., Löffler, F., & Henn, K. (2011). Application of nucleic acid-based tools for monitoring monitored natural attenuation (MNA), biostimulation and bioaugmentation at chlorinated solvent sites (No. NFESC-CR-11-028-ENV). Naval Facilities Engineering Command Port Hueneme CA Engineering Service Center.
Lee, P. K., Johnson, D. R., Holmes, V. F., He, J., & Alvarez-Cohen, L. (2006). Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Applied and Environmental Microbiology, 72(9), 6161-6168.
Lee, P. K., Macbeth, T. W., Sorenson, K. S., Deeb, R. A., & Alvarez-Cohen, L. (2008). Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site. Applied and Environmental Microbiology, 74(9), 2728-2739.
Lee, P. K., Cheng, D., Hu, P., West, K. A., Dick, G. J., Brodie, E. L., Andersen, G.L., Zinder, S. H., He, J., & Alvarez-Cohen, L. (2011). Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. The International Society for Microbial Ecology Journal, 5(6), 1014-1024.
Lee, P. K., Cheng, D., West, K. A., Alvarez‐Cohen, L., & He, J. (2013). Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environmental Microbiology, 15(8), 2293-2305.
Leeson, A., Beevar, E., Henry, B., Fortenberry, J., & Coyle, C. (2004). Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents (No. NFESC-TR-2250-ENV). Naval Facilities Engineering Service Center Port Hueneme CA.
Leninger, A. L. (1975). Thermo SCIENTIFIC T009-Technical bulletin. Biochemistry, 2nd ed., Worth Publishers, New York.
Löffler, F.E., Sanford, R.A., Ritalahti, K.M. (2005). Enrichment, cultivation, and detection of reductively dechlorinating bacteria. Methods in Enzymology 397, 77–111.
Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., Muller, J. A., Fullerton, H., Zinder, S. H., & Spormann, A. M. (2013). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International journal of systematic and evolutionary microbiology, 63(2), 625-635.
Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K., Wagner, M. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing Prokaryotes in the environment. Applied and Environmental Microbiology, 68, 5064–5081.
Lu, X., Wilson, J.T., Kampbell, D.H. (2006). Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Research 40, 3131–3140.
Luijten, M.L.G.C., deWeert, J., Smidt, H., Boschker, H.T.S., deVos, W.M., Schraa, G., Stams, A.J.M. (2003). Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum a Sulfurospirillum multivorans comb. nov. International Journal of Systematic and Evolutionary Microbiology 53, 787–793.
Magnuson, J. K., Stern, R. V., Gossett, J. M., Zinder, S. H., & Burris, D. R. (1998). Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Applied and Environmental Microbiology, 64(4), 1270-1275.
Magoč, T. and S.L. Salzberg. (2011). FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics, 27(21), 2957-2963.
Maness, A. D., Bowman, K. S., Yan, J., Rainey, F. A., & Moe, W. M. (2012). Dehalogenimonas spp. can reductively dehalogenate high concentration of 1, 2-dichloroethane, 1, 2-dichloropropane, and 1, 1, 2-trichloroethane. Applied and Industrial Microbiology and Biotechnology Express, 2(1), 54.
Mansfeldt, Cresten.B., Rowe, A.R., Heavner, G.L.W., Zinder, S.H., Richardson, R.E. (2014). Meta-analyses of Dehalococcoides mccartyi strain 195 transcriptomic profiles identify a respiration rate-related gene expression transition point and inter-operon recruitment of a key oxidoreductase subunit. Applied and Environmental Microbiology, 80, 6062–6072.
Marco-Urrea, E., Nijenhuis, I., Adrian, L. (2011). Transformation and Carbon Isotope Fractionation of Tetra- and Trichloroethene to Trans -Dichloroethene by Dehalococcoides sp . strain CBDB1. Environmental Science and Technology, 45:1555–1562
Mardis, E.R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics 9, 387–402.
Marzorati, M., Ferra, F.De, Raemdonck, H.Van, Borin, S., Allifranchini, E., Carpani, G., Serbolisca, L., Verstraete, W., Boon, N., Daffonchio, D. (2007). A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1 , is linked to dehalogenation of 1,2-dichloroethane. Applied and Environmental Microbiology, 73, 2990–2999.
Mattes, T. E., Alexander, A. K., & Coleman, N. V. (2010). Aerobic biodegradation of the chloroethene: pathways, enzymes, ecology, and evolution. Federation of European Microbiological Societies microbiology reviews, 34(4), 445-475.
Maymo-Gatell, X., Chien, Y. T., Gossett, J. M., & Zinder, S. H. (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318), 1568-1571.
Maymo-Gatell, X., Nijenhuis, I., & Zinder, S. H. (2001). Reductive dechlorination of cis-1, 2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environmental Science and Technology, 35(3), 516-521.
Men, Y., Feil, H., Verberkmoes, N.C., Shah, M.B., Johnson, D.R., Lee, P.K.H., West, K.A., Zinder, S.H., Andersen, G.L., Alvarez-Cohen, L. (2012). Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: Global transcriptomic and proteomic analyses. International Society for Microbial Ecology Journal 6, 410–421.
Miura, T., Yamazoe, A., Ito, M., Ohji, S., Hosoyama, A., Takahata, Y., Fujita, N. (2015). The Impact of Injections of Different Nutrients on the Bacterial Community and Its Dechlorination Activity in Chloroethene-Contaminated Groundwater. Microbes and Environments 30, 164–171.
Molenda, O., Tang, S., Lomheim, L., Edwards, E.A. (2018). Eight new genomes of organohalide-respiring Dehalococcoides mccartyi reveal evolutionary trends in reductive dehalogenase enzymes. doi: https://doi.org/10.1101/345173.
Muller, J. A., Rosner, B. M., Von Abendroth, G., Meshulam-Simon, G., McCarty, P. L., & Spormann, A. M. (2004). Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Applied and Environmental Microbiology, 70(8), 4880-4888.
Mullis, K.B. (1990). The Unusual Origin of the Polymerase Chain Reaction. Scientific American, 262, 56–65.
Muyzer, G., E. C. de Waal and A. G. Uitterlinden (1993) Profiling of complex populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695-700.
Oldenhuis, R., Vink, R.L.J.M., Janssen, D.B., Witholt, B. (1989). Degradation of Chlorinated Aliphatic-Hydrocarbons by Methylosinus-Trichosporium Ob3b Expressing Soluble Methane Monooxygenase. Applied and Environmental Microbiology 55, 2819–2826.
Opel, K. L., Chung, D., & McCord, B. R. (2010). A study of PCR inhibition mechanisms using real time PCR. Journal of forensic sciences, 55(1), 25-33.
Panasonic (2018). Environment and Energy- AMTECLEAN P. https://www2.panasonic.biz/es/catalog/detail/pdf/air/air12_amuteP.pdf
Parthasarathy, A., Stich, T.A., Lohner, S.T., Lesnefsky, A., Britt, R.D., Spormann, A.M. (2015). Biochemical and EPR-Spectroscopic Investigation into Heterologously Expressed Vinyl Chloride Reductive Dehalogenase (VcrA) from Dehalococcoides mccartyi Strain VS. Journal of the American Chemical Society 137, 3525–3532.
Poritz, M., Goris, T., Wubet, T., Tarkka, M. T., Buscot, F., Nijenhuis, I., Lechner, U. & Adrian, L. (2013). Genome sequences of two dehalogenation specialists–Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. Federation of European Microbiological Societies,Microbiol Lett. 2013;343:101–4.
Ranjard, L., F. Poly and S. Nazaret (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Research in Microbiology, 151(3), 167-177.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 72(4), 2765-2774.
Rittmann, B.E., Krajmalnik-Brown, R. (2012). Using electron balances and molecular techniques to assess trichloroethene-induced shifts to a dechlorinating microbial community. Biotechnology and Bioengineering 109, 2230–2239.
Ronaghi, M., M. Uhlén and P. Nyrén (1998) DNA sequencing: A sequencing method based on real-time pyrophosphate. Science, 281(5375), 363-365.
Rossi, P., Shani, N., Kohler, F., Imfeld, G., Holliger, C. (2012). Ecology and biogeography of bacterial communities associated with chloroethene-contaminated aquifers. Frontiers in Microbiology 3, 1–10.
Rowe, A.R., Lazar, B.J., Morris, R.M., Richardson, R.E. (2008). Characterization of the community structure of a dechlorinating mixed culture and comparisons of gene expression in planktonic and biofloc-associated “Dehalococcoides” and Methanospirillum species. Applied and Environmental Microbiology 74, 6709–6719.
Scheutz, C., Durant, N.D., Dennis, P., Hansen, M.H., JØrgensen, T., Jakobsen, R., Cox, E.E., Bjerg, P.L. (2008). Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environmental Science and Technology 42, 9302–9309.
Schmidt, K.R., Augenstein, T., Heidinger, M., Ertl, S., Tiehm, A. (2010). Aerobic biodegradation of cis-1,2-dichloroethene as sole carbon source: Stable carbon isotope fractionation and growth characteristics. Chemosphere 78, 527–532.
Scholz-Muramatsu, H., Neumann, A., Meßmer, M., Moore, E., & Diekert, G. (1995). Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163(1), 48-56.
Schumacher, W., Kroneck, P.M.H., Pfennig, N. (1992). Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Arch Microbiol, 287–293.
Sharkey, F. H., I. M. Banat and R. Marchant (2004) Detection and quantification of gene expression in environmental bacteriology. Applied and Environmental Microbiology, 70(7), 3795-3806.
Smidt, H., Akkermans, A.D.L., Oost, J.Van Der, Vos, W.M.De. (2000). Halorespiring bacteria – molecular characterization and detection. Enzyme and Microbial Technology 27, 812–820.
Smith, C.J., Osborn, A.M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. Federation of European Microbiological Societies, Microbiology Ecology 67, 6–20.
Smits, T. H., Devenoges, C., Szynalski, K., Maillard, J., & Holliger, C. (2004). Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. Journal of Microbiological Methods, 57(3), 369-378.
Sun, B., Cole, J.R., Tiedje, J.M. (2001). Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments. International Journal of Systematic and Evolutionary Microbiology 51, 365–371.
Sung, Y., Ritalahti, K. M., Apkarian, R. P., & Löffler, F. E. (2006). Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Applied and Environmental Microbiology, 72(3), 1980-1987.
Tee, J.J. (2017). Biostimulation effect on the abundance of genus Dehalococcoides and reductive dehalogenases in the chloroethene contaminated groundwater. Master thesis in NCKU, Tainan, Taiwan.
ter Braak, C.J.F. (1985). CANOCO - A FORTRAN Program for Canonical Correspondence Analysis and Detrended Correspondence Analysis. IWIS-TNO, Wageningen, The Netherlands.
ter Braak, C.J.F. (1986). Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology, 67, 1167–1179.
Thomas, S.H., Wagner, R.D., Arakaki, A.K., Skolnick, J., Kirby, J.R., Shimkets, L.J., Sanford, R.A., Löffler, F.E. (2008). The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS ONE 3.
TWEPA (2011). Taiwan Environmental Protection Agency. Laws and regulations retrieving system. https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015529.
TWEPA (2017). Taiwan Environmental Protection Agency. Soil and groundwater pollution remediation funds. https://sgw.epa.gov.tw/ContaminatedSitesMap/Default.aspx.
Uchino, Y., Miura, T., Hosoyama, A., Ohji, S., Yamazoe, A., Ito, M., Takahata, Y., Suzuki, K. I., & Fujita, N. (2015). Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Standards in genomic sciences, 10(1), 102.
USEPA (2005). United States Environmental Protection Agency. Common Chemicals Found at Superfund Sites; http://www.epa.gov/superfund/ resources/chemicals.htm (accessed January 2005).
Utkin, I., Woese C., & Wiegel, J. (1994). Isolation and Characterization of Desulfitobacterium dehalogenans gen. nov., sp. Nov., an Anaerobic Bacterium Which Reductively Dechlorinates Chlorophenolic Compounds. International Journal of Systematic Bacteriology, 44(4), 612-620.
van der Zaan, B., Hannes, F., Hoekstra, N., Rijnaarts, H., de Vos, W. M., Smidt, H., & Gerritse, J. (2010). Correlation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Applied and Environmental Microbiology, 76(3), 843-850.
Vannelli, T., Logan, M., Arciero, D.M., Hooper, a B. (1990). Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea. Applied and Environmental Microbiology, 56, 1169–1171.
Villemur, R., Lanthier, M. (2006). The Desulfitobacterium genus. Federation of European Microbiological Societies, Microbiol Rev 30(5):706–733.
Vogel, T. M., & McCarty, P. L. (1985). Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology, 49(5), 1080-1083.
Vogel, T. M., Criddle, C. S., & McCarty, P. L. (1987). Transformations of halogenated aliphatic compounds. Environmental Science & Technology, 21(8), 722-736.
VonWintzingerode, F., Schlötelburg, C., Hauck, R., Hegemann, W., Göbel, U.B. (2001). Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. Federation of European Microbiological Societies, Microbiology Ecology 35, 189–196.
Wolfe, W.J., Haugh, C.J., Webbers, A., Diehl, T.H. (1997). Preliminary Conceptual Models of the Occurrence, Fate , and Transport of Chlorinated Solvents in Karst Regions of Tennessee. USGS Water-Resources Investigations Report 97-4097.
Wang, Q., G.M. Garrity, J.M. Tiedje and J.R. Cole. (2007). Na ̈ıve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267.
Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2), 697-703.
Wilson, J.T., Chapelle, F.H., 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. USEPA Publication EPA/600/R-, 1–248.
Woese, C. R. (1987). Bacterial evolution. Microbiological reviews, 51(2), 221.
Wolfe, W.J., Haugh, C.J., Webbers, A., Diehl, T.H. (1997). Preliminary Conceptual Models of the Occurrence , Fate , and Transport of Chlorinated Solvents in Karst Regions of Tennessee. USGS Water-Resources Investigations Report 97-4097.
Yan, J., Ritalahti, K.M., Wagner, D.D., Löffler, F.E. (2012). Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Applied and Environmental Microbiology 78, 6630–6636.
Yan, J., Im, J., Yang, Y., Loffler, F.E. (2013). Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20120320–20120320.
Yang, Y., & Zeyer, J. (2003). Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Applied and environmental microbiology, 69(5), 2879-2883.
Yoshida, N., Takahashi, N., & Hiraishi, A. (2005). Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Applied and Environmental Microbiology, 71(8), 4325-4334
Zhao, H.P., Schmidt, K.R., Tiehm, A. (2010). Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes. Water Research 44, 2276–2282.
Zinder, S.H. (2016). Dehalococcoides has a dehalogenation complex. Environmental Microbiology 18, 2773–2775.
Ziv-El, M., Delgado, A.G., Yao, Y., Kang, D.W., Nelson, K.G., Halden, R.U., Krajmalnik-Brown, R. (2011). Development and characterization of DehaloR2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene. Applied Microbiology and Biotechnology 92, 1063–1071.
Ziv-El, M., Popat, S.C., Parameswaran, P., Kang, D.W., Polasko, A., Halden, R.U., Rittmann, B.E., Krajmalnik-Brown, R. (2012). Using electron balances and molecular techniques to assess trichloroethene-induced shifts to a dechlorinating microbial community. Biotechnology and Bioengineering 109, 2230–2239.