研究生: |
吳長穎 Wu, Chang-Ying |
---|---|
論文名稱: |
具耦合電感之新型高轉換比雙向直流-直流轉換器 A Novel High Conversion Ratio Bidirectional DC-DC Converter with Coupled-Inductor |
指導教授: |
陳建富
Chen, Jiann-Fuh |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 高轉換比 、雙向 、耦合電感 |
外文關鍵詞: | High conversion ratio, bidirectional, coupled-inductor |
相關次數: | 點閱:104 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一具耦合電感之新型高轉換比雙向直流-直流轉換器,利用耦合電感於開關切換時二次側極性相反的特性,升壓模式中,二次側雙電容為並聯充電、串聯放電,轉換器操作於適當責任週期下,即可達到高升壓比,而一次側箝位電路更可有效降低主開關之電壓應力,因此可採用低導通阻抗之開關降低導通損;降壓模式中,二次側雙電容為串聯充電、並聯放電,因此能達到高降壓比,此外,降壓時雙開關和雙電容可視為兩組主動箝位電路,使開關達到零電壓切換,有效降低切換損,轉換器具有高效率及元件少等特色,本文首先提出此雙向轉換器之動作原理與穩態特性分析,最後實作一組轉換電壓24 V/400 V,功率200 W之雛型電路,以驗證本論文中所提雙向轉換器之可行性。
In this thesis, a novel high conversion ratio bidirectional DC-DC converter with coupled-inductor technique is proposed. In boost mode, two capacitors are parallel charged and series discharged by the coupled-inductor. Thus, high step-up voltage gain can be achieved with an appropriate duty ratio. The voltage stress on the main switch is reduced by a clamp circuit. Therefore, low resistance RDS(ON) of the main switch can be adopted to reduce conduction loss. In buck mode, two capacitors are series charged and parallel discharged by coupled-inductor. The high step-down gain is achieved. Besides, all of the switches are zero voltage-switching (ZVS) turned on and the switching loss can be improved. Due to two active clamp circuits, The efficiency can be further improved. The operating principle and steady-state analyses of the voltage gain are discussed. Finally, a 24-V input voltage, 400-V output voltage, and 200-W output power prototype circuit is implemented in the laboratory to verify the performance.
[1] T. F. Wu, K. H. Sun, C. L. Kuo and C. H. Chang, “Predictive current controlled 5-kw single-phase bidirectional inverter with wide inductance variation for dc-microgrid applications,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3076-3084, Dec. 2010.
[2] X. Zhu, X. Li, G. Shen and D. Xu, “Design of the dynamic power compensation for PEMFC distributed power system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1935–1944, Jun. 2010.
[3] R. Gules, J. D. P. Pacheco, H. L. Hey and J. Imhoff, “A maximum power point tracking system with parallel connection for PV stand-alone applications,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2674–2683,Jul. 2008.
[4] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sep. 2007.
[5] M. Jang and V. G. Agelidis, “A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1568-1577, May. 2011.
[6] Venkatesan, K., “Current mode controlled bidirectional flybackconverter,” IEEE PESC., vol. 2, pp. 835-842, Jun. 1989
[7] T. Bhattacharya, V. S. Giri, K. Mathew and L. Umanand, “Multiphase bidirectional flyback converter topology for hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 78–84, Jan. 2009.
[8] G. Chen, Y. S. Lee, S. Y. R. Hui, D. Xu, and Y. Wang, “Actively clamped bidirectional flyback converter,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 770–779, Aug. 2000.
[9] L. Eitzen, C. Graf, and J. Maas, “Cascaded bidirectional flyback converter driving DEAP transducers,” in Proc. IEEE IECON, pp. 1226-1231, Nov. 2011.
[10] T. Qian and B. Lehman, “Coupled input-series and output-parallel dual interleaved flyback converter for high input voltage application,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 88–95, Jan. 2008.
[11] B. R. Lin, C. L. Huang and Y. E. Lee, “Asymmetrical pulse-width modulation bidirectional dc–dc converter,” IET Power Electron., vol. 1, no. 3, pp. 336–347, Sep. 2008.
[12] G. Ma, W. Qu, G. Yu, Y. Liu, N. Liang and W. Li, “A zero-voltage switching bidirectional dc–dc converter with state analysis and soft switching-oriented design consideration,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2174–2184, Jun. 2009.
[13] F. Z. Peng, H. Li, G. J. Su and J. S. Lawler, “A new ZVS bidirectional dc–dc converter for fuel cell and battery application,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54–65, Jan. 2004.
[14] H. Li, F. Z. Peng and J. S. Lawler, “A natural ZVS medium-power bidirectional dc–dc converter with minimum number of devices,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 525–535, Mar. 2003.
[15] L. R. Chen, N. Y. Chu, C. S. Wang and R. H. Liang, “Design of a reflexbased bidirectional converter with the energy recovery function,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3022–3029, Aug. 2008.
[16] T. F. Wu, Y. C. Chen, J. G. Yang and C. L. Kuo, “Isolated bidirectional full-bridge dc–dc converter with a flyback snubber,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1915–1922, Jul. 2010.
[17] S. Inoue and H. Akagi, “A bidirectional dc–dc converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2299–2306, Nov. 2007.
[18] Y. Xie, J. Sun and J. S. Freudenberg, “Power flow characterization of a bidirectional galvanically isolated high-power dc-dc converter over a wide operating range,” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 54–66, Jan. 2010.
[19] S. Jalbrzykowski, A. Bogdan and T. Citko, “A dual full-bridge resonant class-e bidirectional dc-dc converter,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3879–3883, Sep. 2011.
[20] L. Zhu, “A novel soft-commutating isolated boost full-bridge ZVS-PWM DC-DC converter for bidirectional high power applications,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 422–429, Mar. 2006.
[21] F. Zhang and Y. Yan, “Novel forward-flyback hybrid bidirectional dc–dc converter,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1578–1584, May. 2009.
[22] B.-R. Lin, J.-J. Chen and F.-Y. Hsieh, “Analysis and Implementation of a Bidirectional Converter with High Conversion Ratio,” in Proc. IEEE ICIT. Conf., 2008, pp. 1-6
[23] L. S. Yang and T. J. Liang, “Analysis and implementation of a novel bidirectional dc-dc converter,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 422-434, Jan. 2012.
[24] P. Das, S. A. Mousavi and G. Moschopoulos, “Analysis and design of a nonisolated bidirectional zvs-pwm dc-dc converter with coupled inductors,” IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2630-2641, Oct. 2010.
[25] C.Y. Inaba, Y. Konishi and M. Nakaoka “High frequency PWM controlled step-up chopper type dc-dc power converters with reduced peak switch voltage stress,” IEE Proc.-Electr. Power Appl., vol. 151, no. 1, pp. 47–52, January 2004
[26] R.-J. Wai, R.-Y. Duan and K.-H. Jheng, “High-efficiency bidirectional dc–dc converter with high-voltage gain,” IET Power Electron., vol. 5, pp. 173-184, Jun. 2012.
[27] K. Jin, M. Yang, X. Ruan and M. Xu, “Three-level bidirectional converter for fuel-cell/battery hybrid power system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1976–1986, Jun. 2010.
[28] W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin and C. H. Liu, “Analysis, design, and control of bidirectional cascoded configuration for a fuel cell hybrid power system,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1565–1575, Jun. 2010.
[29] L. Schuch, C. Rech, H. L. Hey, H. A. Grundling, H. Pinheiro and J. R. Pinheiro, “Analysis and design of a new high-efficiency bidirectional integrated ZVT PWM converter for DC-bus and battery-bank interface,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1321–1332, Sep./Oct. 2006
[30] Y. S. Lee and Y. Y. Chiu, “Zero-current-switching switched-capacitor bidirectional dc–dc converter,” Proc. Inst. Elect. Eng.-Electr. Power Appl., vol. 152, no. 6, pp. 1525–1530, Nov. 2005.
[31] Z. Amjadi and S. S. Williamson, “A novel control technique for a switched-capacitor-converter-based hybrid electric vehicle energy storage system,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 926–934,Mar. 2010.
[32] F. Z. Peng, F. Zhang and Z. Qian, “A magnetic-less dc–dc converter for dual-voltage automotive systems,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 511–518, Mar./Apr. 2003.
[33] Y. P. Hsieh, J. F. Chen, T. J. Liang and L. S. Yang, “A novel high step-up dc-dc converter for a microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127–1136, Apr. 2011.
[34] Y. P. Hsieh, J. F. Chen, T. J. Liang and L. S. Yang, “Analysis and implementation of a novel single-switch high step-up dc-dc converter,” IET Power Electron., 2012, Vol. 5, pp. 11– 21
[35] W. C. Liao, T. J. Liang, H. H. Liang, H. K. Liao, L. S. Yang, K. C. Juang and J. F. Chen, “Study and implementation of a novel bidirectional dc-dc converter with high conversion ratio,” in Proc. IEEE ECCE, 2011, pp. 134–140.