| 研究生: |
黃詩雄 Huang, Shin-Syong |
|---|---|
| 論文名稱: |
高速導管式類比至數位轉換器之設計 Design of High-Speed Pipelined Analog-to-Digital Converters |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 導管式 、管線式 、類比至數位轉換器 、高速 、低功率 |
| 外文關鍵詞: | pipelined ADC, ADC, A/D, analog-to-digital converter, high speed, low power |
| 相關次數: | 點閱:106 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
導管式類比至數位轉換器具有高速與高解析度的特性,並且普遍應用在無線通訊、視訊以及數位訊號處理系統中。由於互補式金氧半(CMOS)製程的演進,金氧半場效電晶體的通道長度縮小並且可達到較高的截止頻率,然而,逐漸降低的電源供應電壓使運算放大器的設計變得困難。在本論文中,我們以1.2伏特的電源供應電壓,研製了兩個高速低功率的導管式類比至數位轉換器。
在第一個設計中,我們以台積電標準90奈米1P9M CMOS製程設計並實作了一個10位元、每秒100百萬次取樣、1.2伏特電源供應電壓的導管式類比至數位轉換器。此類比至數位轉換器採用了偽差動式AB類疊接運算放大器。量測結果顯示在每秒100百萬次取樣下,功率消耗為5.93毫瓦。在每秒100百萬次取樣下量測所得的微分非線性誤差、積分非線性誤差分別是-0.44~0.46 LSB、-0.71~1.12 LSB。在0.5百萬赫茲的輸入訊號下,得到最大的訊號雜訊失真比、無雜訊影響動態範圍分別為54.71分貝、68.6分貝,有效位元則為8.8位元。有效輸入頻寬則大於35百萬赫茲。在較高的取樣頻率下,每秒150百萬次取樣,得到最大的訊號雜訊失真比、無雜訊影響動態範圍分別為50.68分貝、66.51分貝。在每秒100百萬次取樣下此類比數位轉換器的FOM為133 fJ/conversion-step。晶片面積為0.932平方毫米,核心電路面積則為0.235平方毫米。量測結果顯示此類比至數位轉換器具有高功率效率及高速操作的特性。
在第二個設計中,我們提出一個12位元、每秒100百萬次取樣、1.2伏特電源供應電壓的電荷幫浦式導管式類比至數位轉換器,其並配合了前景式數位校正技術。此類比至數位轉換器以台積電標準90奈米1P9M CMOS製程設計及製造。電容不匹配限制了高解析度的導管式類比至數位轉換器的效能。因此,我們提出了兩個電荷幫浦式導管式轉換級,其具有對電容不匹配不敏感的特性,並且具有將每級1.5位元的轉換器的回授因子從1/2提升到1的優點。此外,我們採用背景式數位校正去校正轉換級的增益誤差,此校正演算法則以MATLAB實現。量測結果顯示,在輸入訊號頻率為0.5百萬赫茲、每秒50百萬次取樣下,所得到的訊號雜訊失真比在校正前與校正後分別為16.21分貝與33.24分貝,功率消耗為13毫瓦。晶片面積為1.538平方毫米,核心電路面積則為0.503平方毫米。
Pipelined analog-to-digital converters (ADCs) are generally regarded as the A/D converters with high-speed and medium-to-high-resolution characteristics, and they are widely adopted in wireless communication, video and digital-signal-processing (DSP) systems. Thanks to the evolution of the CMOS process, the channel length of MOS transistor is getting smaller, and its unit-gain transition frequency is getting higher. However, the lower supply voltage makes the op-amp design more difficult. In this thesis, we design and implement two high-speed and low-power pipelined ADCs with a 1.2-V supply voltage.
In the first work, a 10-bit 100-MS/s 1.2-V pipelined ADC has been carried out with TSMC standard 90-nm 1P9M CMOS process. This ADC adopts pseudo-differential class-AB telescopic cascode op-amp. Measurement results show that when the sampling frequency is 100 MS/s, the power consumption is 5.93 mW. The measured DNL and INL are within -0.44~0.46 LSB and -0.71~1.12 LSB at 100MS/s, respectively. The peak SNDR and SFDR are 54.71 and 68.6 dB at a 0.5-MHz input frequency, respectively. The ENOB is 8.8 bit. The ERBW is over 35 MHz. For higher sampling frequency, 150 MS/s, the peak SNDR and SFDR are 50.68 and 66.51 dB, respectively. The FOM of this ADC at 100 MS/s is 133 fJ/conversion-step. The chip area is 0.932mm2, and the active area is 0.235 mm2. The measured results demonstrate high power efficiency and high-speed potential of this ADC.
In the second work, a 12-bit 100-MS/s 1.2-V charge-pump-based pipelined ADC with foreground calibration has been proposed. It has been designed and implemented with TSMC standard 90-nm 1P9M CMOS process. The performance of a high-resolution pipelined ADC is mainly limited by the capacitor mismatch. Accordingly, we propose two charge-pump-based pipelined stages which are less sensitive to the capacitor mismatch, and the feedback factor of the 1.5-bit/stage MDAC is enhanced from 1/2 to 1. The foreground calibration, which is implemented in MATLAB, is used to correct the stage-gain error of pipelined stages. The measured results show that, with a 0.5-MHz sine wave and operating at 50 MS/s, the SNDR is 16.21 dB and 33.24 dB before and after calibration, respectively, and the power consumption is 13 mW. The chip area is 1.538 mm2, and the active area is 0.503 mm2.
[1] J. Li, “Accuracy enhancement techniques in low-voltage high-speed pipelined ADC design,” Oregon State University, Ph.D. thesis, 2004.
[2] P. C. Yu and H.-S. Lee, “A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, pp. 1854–1861, Dec. 1996.
[3] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger, “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers,” IEEE J. Solid-State Circuits, vol. 32, pp. 312–320, Mar. 1997.
[4] J. Arias, V. Boccuzzi, L. Quintanilla, L. Enriquez, D. Bisbal, M. Banu, and J. Barbolla, “Low-power pipeline ADC for wireless LANs,” IEEE J. Solid-State Circuits, vol. 39, pp. 1338–1340, Aug. 2004.
[5] J. Crols and M. Steyaert, “Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid- State Circuits, vol. 29, pp. 936–942, Aug. 1994.
[6] H. C. Kim, D. K. Jeong, and W. Kim, “A partially switched-opamp technique for high-speed low-power pipelined analog-to-digital converters,” IEEE Trans. Circuits Syst. I, vol. 53, pp. 795–801, Apr. 2006.
[7] B.-G. Lee, B.-M. Min, G. Manganaro, and J. W. Valvano, “A 14-b 100-MS/s pipelined ADC with a merged SHA and first MDAC,” IEEE J. Solid-State Circuits, vol. 43, pp. 2613–2619, Dec. 2008.
[8] B.-G. Lee and R. M. Tsang, “A 10-bit 50 MS/s pipelined ADC with capacitor- sharing and variable-gm opamp,” IEEE J. Solid-State Circuits, vol. 44, pp. 883–890, Mar. 2009.
[9] J. Li, X. Zeng, L. Xie, J. Chen, J. Zhang, and Y. Guo, “A 1.8-V 22-mW 10-bit 30-MS/s pipelined CMOS ADC for low-power subsampling applications,” IEEE J. Solid-State Circuits, vol. 43, pp. 321-329, Feb. 2008.
[10] S.-T. Ryu, B.-S. Song, and K. Bacrania, “A 10-bit 50-MS/s pipelined ADC with opamp current reuse,” IEEE J. Solid-State Circuits, vol. 42, pp. 475-485, Mar. 2007.
[11] M.-Y. Kim, J. Kim, T. Lee, and C. Kim, “10-bit 100MS/s CMOS pipelined A/D converter with 0.59pJ/conversion-step,” IEEE Asian Solid-State Circuits Conference, Nov. 2008, pp. 65-68.
[12] K. Chandrashekar and B. Bakkaloglu, “A 10b 50MS/s opamp-sharing pipeline A/D with current-reuse OTAs,” IEEE Custom Intergrated Circuits Conference, Sep. 2009, pp. 263-266.
[13] Y.-D. Jeon, S.-C. Lee, K.-D. Kim, J.-K. Kwon, and J. Kim, “A 4.7mW 0.32mm2 10b 30MS/s pipelined ADC without a front-end S/H in 90nm CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2007, pp. 456-457.
[14] P. Huang and Y. Chiu, “A gradient-based algorithm for sampling clock skew calibration of SHA-less pipeline ADCs,” IEEE Int. Symp. Circuits and Systems, May. 2007, pp.1241-1244.
[15] S. Malik and R. Geiger, “Simultaneous capacitor sharing and scaling for reduced power in pipeline ADCs,” IEEE Midwest Symposium on Circuits and Systems, Aug. 2005, pp. 1015-1018.
[16] N. Sasidhar, Y. Kook, S. Takeuchi, K. Hamashita, K. Takasuka, P. Hanumolu, and U. K. Moon, “A 1.8 V 36-mW 11-bit 80 MS/s pipelined ADC using capacitor and opamp sharing,” IEEE Asian Solid-State Circuits Conference, Sep. 2007, pp. 240–243.
[17] K. Nagaraj, T. R. Viswanathan, K. Singhal, and J. Vlach, “Switched-capacitor circuits with reduced sensitivity to amplifier gain,” IEEE Trans. Circuits Syst., pp. 571-574, May. 1987.
[18] J. Li and U. K. Moon, “A 1.8V 67mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Sep. 2004.
[19] Y. J. Kook, J. Li, B. Lee, and U. K. Moon, “Low-power and high-speed pipelined ADC using time-aligned CDS technique,” IEEE Custom Intergrated Circuits Conference, Sep. 2007, pp. 321-324
[20] J.-F. Lin and S.-J. Chang, “A 10-bit 60-MS/s low-power pipelined ADC with split-capacitor CDS technique,” IEEE Trans. Circuits Syst. II, vol. 57, pp. 163-167, Mar. 2010.
[21] B. R. Gregoire and U. K. Moon, “An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain, ” IEEE J. Solid-State Circuits, vol. 43, pp. 2620-2630, Dec. 2008.
[22] C.-H. Huang, S.-J. Chang, and K.-J. Lee, “Design of high-resolution pipelined analog-to-digital converters using multiple-phase capacitor-splitting feedback interchange technique,” IEEE Asia-Pacific Conference on Circuits and Systems, vol. 2, 2004, pp. 625 – 628.
[23] S. Ray and B.-S. Song, “A 13-b linear, 40-MS/s pipelined ADC with self-configured capacitor matching,” IEEE J. Solid-State Circuits, vol. 42, pp. 463-474, Mar. 2007.
[24] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc. 1997.
[25] B. Razavi, Principle of Data Conversion System Design, AT&T. 1995.
[26] J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-bit 5-Msample/s CMOS two-step flash ADC,” IEEE J. Solid-State Circuits, vol. 24, pp. 241-249, Apr. 1999.
[27] B. Razavi and B. A. Wooley, “A 12-bit 5-Msample/s two-step CMOS ADC,” IEEE J. Solid-State Circuits, vol. 27, pp. 1667-1678, Dec. 1992.
[28] C. C. Lee and M. P. Flynn, “A 12b 50MS/s 3.5mW SAR assisted 2-stage pipeline ADC,” Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2010, pp. 239–240.
[29] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, and S.-J. Chang, “A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2010, pp. 243–244.
[30] Y. Asada, K. Yoshihara, T. Urano, M. Miyahara, and A. Matsuzawa, “A 6bit, 7mW, 250fJ, 700MS/s subranging ADC,” IEEE Asian Solid-State Circuits Conference, Nov. 2009, pp. 141-144.
[31] C.-H. Huang, “Design and diagnosis of high speed pipelined A/D converters,” National Cheng Kung University, master thesis, 2004.
[32] F. Kuttner, “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-μm CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2002, pp. 176-177.
[33] J. Craninckx and G. Van der Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to- 0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS,” IEEE International Solid-State Circuits Conference, Feb. 2007, pp. 246-247.
[34] Y. Chen, S. Tsukamoto, and T. Kuroda, “A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS,”IEEE Asian Solid-State Circuits Conference, Nov. 2009, pp. 145-148.
[35] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M, Huang, and C.-H. Huang, “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” IEEE International Solid-State Circuits Conference, Feb. 2010, pp.386-387.
[36] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. of Solid-State Circuits, vol. 45, pp.731-740, Apr. 2010.
[37] S. H. Lewis and P. R. Gray, “A pipelined 5-Msamples/s 9-bit analog-to-digital converter,” IEEE J. of Solid-State Circuits, vol. 22, pp. 954-961, Dec. 1987.
[38] S. H. Lewis, H. S. Fetterman, G. F. Gross, Jr., R. Ramachandran, and T. R. Viswanathan, “10b 20Msample/s analog-to-digital converter,” IEEE J. of Solid-State Circuits, vol. 27, pp. 351-358, Mar. 1992.
[39] P. W. Li, M. J. Chin, P. R. Gray, and R. Castello, “A ratio-independent algorithmic analog-to-digital conversion technique,” IEEE J. Solid-State
Circuits, vol. 19, pp. 828-836, Dec. 1984.
[40] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipelined analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May.1999.
[41] B. Ginetti, P. G. A. Jespers, and A. Vandemeulebroecks, “ A CMOS 13-b cyclic RSD A/D converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 957 -965, Jul. 1992.
[42] B. Ginetti and P. Jespers, “ A 1.5 MS/s 8-bit pipelined RSD A/D converter,” European Solid-State Circuits Conference, Sep. 1990, pp.137-140.
[43] M. E. Waltari and K. A. I. Halonen, Circuit Techniques for Low-voltage and High-speed A/D Converter, Kluwer Academic Publishers, 2002.
[44] Y. Chiu, “High-Performance Pipeline A/D Converter Design in Deep-Submicron CMOS,” University of California, Los Angeles, Ph.D. thesis, 2004
[45] R. Gregorian and G. C. Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley & Sons, Singapore 1986.
[46] L. Sumanen, Pipeline Analog-to-Digital Converters for Wide-Band Wireless Communications, Helsinki University of Technology Electronic Circuit Design Laboratory Report 35, 2002.
[47] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of opamp Imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE, vol. 84, pp.1584-1614, November 1996.
[48] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2001.
[49] J.-F. Lin and S.-J. Chang, “A high speed pipelined A/D converter using modified time-shifted CDS technique,” National Cheng Kung University, master thesis, 2005.
[50] T. Cho, “Low-power, low-voltage, analog-to-digital converter technique using pipelined architectures,” University of California, Berkeley, Ph.D. thesis, 1995.
[51] S. Sutarja and P. R. Gray, “A pipelined 13-bit, 250-ks/s, 5 V analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1316–1323, Dec. 1988.
[52] A. M. Abo and P. R. Gray, “A 1.5V, 10-bit, 14MS/s CMOS pipeline analog-to-digital converter,” Symposium on VLSI Circuits Digest of Technical Papers, 1998, pp. 166–169.
[53] Y. Chiu, P. R. Gray, and B. Nikolic, “A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39, pp. 2139–2151, Dec. 2004.
[54] T. Ueno, T. Ito, D. Kurose, T. Yamaji, and T. Itakura, “A 1.2 V, 24 mW/ch, 10 bit, 80 MSample/s pipelined A/D converters,” IEEE Custom Intergrated Circuits Conference, Sep. 2006, pp. 501-504.
[55] S. Kawahito, K. Honda, Z. Liu, K. Yasutomi, and S. Itoh, “A 15b power- efficient pipeline A/D converter using non-slewing closed-loop amplifiers,” IEEE Custom Intergrated Circuits Conference, Sep. 2008, pp. 117-120.
[56] K. Honda, M. Furuta, and S. Kawahito, “A low-power low-voltage 10-bit 100-MSample/s pipeline A/D converter using capacitance coupling techniques,” IEEE J. Solid-State Circuits, vol. 42, pp. 757–765, Apr. 2007.
[57] M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei, “A pseudo-class-AB telescopic-
cascode operational amplifier,” IEEE Int. Symp. Circuits and Systems, May. 2004, vol. 2, pp. 737–740.
[58] K. Bult and G. Geelen, “A fast-settling CMOS opamp for SC circuits with 90-dB DC gain,” IEEE J. Solid-State Circuits, vol. 25, pp.1379–1384, Dec. 1990.
[59] B.-M. Min, P. Kim, F. W. Bowman, III, D. M. Boisvert, and A. J. Aude, “A 69-mW 10-bit 80-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 38, pp.2031–2039, Dec. 2003.
[60] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1439, Oct. 1989.
[61] M. Yoshioka, M. Kudo, T. Mori, and S. Tsukamoto, “A 0.8V 10b 80MS/s 6.5mW pipelined ADC with regulated overdrive voltage biasing,” IEEE International Solid-State Circuits Conference, Feb. 2007, pp. 452-453.
[62] A. K. Das, H. Bhasin, and S. S. R. Giduturi ,“A 10mW 9.7ENOB 80MSPS pipeline ADC in 65nm CMOS process without any special mask requirement and with single 1.3V supply,” IEEE Custom Intergrated Circuits Conference, Sep. 2009, pp. 165-168.
[63] Y.-C. Huang and T.-C. Lee,“A 10b 100MS/s 4.5mW pipelined ADC with a time sharing technique, ” IEEE International Solid-State Circuits Conference, Feb. 2010, pp. 300-301.
[64] Y.-C. Huang and T.-C. Lee,“A 0.02-mm2 9-bit 50-MSs cyclic ADC in 90-nm digital CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, pp. 610–619, Mar. 2010.
[65] B.-S. Song, M. F. Tompsett, and K. R. Lakshmikumar, “A 12-bit 1-Msample/s capacitor error-averaging pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1324–1333, Dec. 1988.
[66] S.-T. Ryu, S. Ray, B.-S. Song, G.-H. Cho, and K. Bacrania, “A 14-b linear capacitor self-trimming pipelined ADC,” IEEE J. Solid-State Circuits, vol. 39, pp. 2046–2051, Nov. 2004.
[67] H. Z. Hoseini, O. Shoaei, and I. Kale, “A new structure for capacitor mismtach-insensitive multiply-by-two amplification,” IEEE Int. Symp. Circuits and Systems, May. 2006, pp. 4879–4882.
[68] J. Goes, J. C. Pereira, N. Paulino, and M. M. Silva, “Switched-capacitor multiply-by-two amplifier insensitive to component mismatches,” IEEE Trans. Circuits Syst. II, vol. 54, pp. 29-33, Jan. 2007.
[69] I. Ahmed, J. Mulder, and D. A. Johns, “A 50MS/s 9.9mW pipelined ADC with 58dB SNDR in 0.18um CMOS using capacitive charge pumps,” IEEE International Solid-State Circuits Conference, Feb. 2009, pp. 164-165.
[70] I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s nyquist-rate CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, pp.318-325, Mar. 2000.
[71] O. Stroeble, V. Dias, and C. Schwoerer, “An 80 MHz 10b pipeline ADC with dynamic range doubling and dynamic reference selection,” IEEE International Solid-State Circuits Conference, Feb. 2004, pp. 462-463.
[72] L. Brooks and H.-S. Lee, “Background calibration of pipelined ADCs via decision boundary gap estimation,” IEEE Trans. Circuits Syst. I, vol. 55, pp. 2969–2979, Nov. 2008.