簡易檢索 / 詳目顯示

研究生: 張祐誠
Chang, Yu-Chen
論文名稱: 升壓型電路之脈衝寬度調變電流模式控制器研製
Design and Implementation of a PWM Current-Mode Controller for Boost Converters
指導教授: 黃尊禧
Huang, Tzuen-Hsi
共同指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 升壓電路脈衝寬度調變控制器電流操作模式連續導通電流模式
外文關鍵詞: Boost, PWM controller, Current mode control, CCM
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中完成一脈衝寬度調變電流模式控制器的設計與實作。一般市售之電源管理控制晶片為了保有更高的使用自由度以及符合各種不同需求之相關升降壓電路,通常不會包含補償電路。本文所提出之控制器為一內建輸入電壓3.3 V輸出電壓5 V最大功率10 W升壓轉換器之迴路補償電路,為整合太陽能後端充電器模組以增加實用性和便利性,此控制器能幫助縮小電路面積及減少外部元件,係電流模式控制而非電壓模式控制,因電流模式控制比電壓模式控制有較快的暫態反應。對電流模式控制而言,電感電流為一相當重要資訊,為防止諧波振盪的現象,須偵測電感電流訊號並將之與斜率補償之三角波訊號結合,
    此脈衝寬度調變電流模式控制器是使用台積電(TSMC)所提供的0.18µm RF CMOS 1P6M 1.8V/3.3V 混合訊號互補式金氧半製程來製造。晶片全部面積大小約0.812*0.825 mm2,功耗為10 mW,轉換器在負載電流0.75 A~2 A,輸出電壓5 V情況下最高效率為86%。

    In this thesis, a pulse-width modulation (PWM) current mode controller is designed and implemented. In order to increase the flexibility of usage and to cover a wide range of design specifications, conventional power management ICs in the market do not include a compensation circuit. The proposed controller is comprised of a compensation circuit for the converter which has an input voltage of 3.3 V, an output voltage of 5 V and a maximum power of 10 W. For the applicability and convenience of a solar-based converter module, the proposed controller IC can minimize the PCB area and the number of components outside the chip. Compared to the voltage mode, the current mode control has the advantages of better transient response, easy compensation, etc. The total chip area is 0.812×0.825 mm2. The maximum efficiency is 86% at an output voltage of 5 V when the load current is in a range from 0.75 A to 2 A. Finally, this chip is fabricated with the TSMC SMC 0.18 µm RF CMOS 1P6M 1.8/3.3 V process.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Organization 3 Chapter 2 Basic Operation of Switching Regulator 4 2.1 Introduction of Switching Regulators 4 2.1.1 Non-Isolated Switching Regulator 5 2.1.2 Isolated Switching Regulator 11 2.2 Power Loss of Basic Switching Regulator 16 2.2.1 Conduction Loss 16 2.2.2 Switching Loss 17 2.2.3 Other Losses 19 Chapter 3 Design and Analysis of Current Mode Boost Regulator 20 3.1 Control Strategy 20 3.1.1 Voltage Mode Control 20 3.1.2 Current Mode Control 22 3.2 Stability issues of system 26 3.3 Subharmonic oscillation 32 Chapter 4 Integrated Circuit Design of PWM Controller 35 4.1 Architecture 35 4.2 Design and Simulation Results of the Function Block 37 4.2.1 Bias Circuit 37 4.2.2 Two-Stage Operational Amplifier 40 4.2.3 Hysteresis Comparator 43 4.2.4 Oscillator and Ramp Generator 48 4.2.5 V/I Converter 50 4.2.6 Pulse-Width Generator 50 4.2.7 Buffer 52 Chapter 5 Layout and Simulation of PWM Controller 53 5.1 Layout 53 5.2 Boost Regulator Simulation Results 54 Chapter 6 Conclusions and Future Works 63 6.1 Conclusions 63 6.2 Future works 64 Reference 65

    [1] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics”, John Wiley & Sons, Inc., 2003.
    [2] R. W. Erickson and D. Maksimovic, “Fundamental of Power Electronics, 2nd edition”, Kluwer Academic Pub., 2001.
    [3] A. I. Pressman, “Switching Power Supply Design”, 2nd ed, McGraw-Hill, 1998.
    [4] B. Arbetter, R. Rrickson, and D. Maksimovic, “DC-DC Converter Design for Battery-operated Systems”, in Power Electronics Specialists Conference, 1995, Volume1, pp.103-109, 1995.
    [5] “Linear & Switching Voltage Regulator Handbook” ON Semiconductor Inc, Feb 2002.
    [6] X. Liu, F. Lu, D. Qiao, S. Guo and Y. C. Chang “Comprehensive Power Analysis and Efficiency Optimum Design for Step-Up DC-DC Converters”, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Volume: 6.
    [7] F. Zadeh and G. A. Rincon-Mora, “A Comprehensive Power Analysis and a Highly Efficient, Mode-Hopping DC-DC Converter”, February 2002 Mark Gildersleeve, Hassan Pooya.
    [8] V. Barkhordarian, International Rectifier, and El Segundo, Ca. “Power MOSFET Basics”, 2007
    [9] “CURRENT MODE VOLTAGE MODE” by Dr. Ray Ridley, Switching Power Magazine October 2000.
    [10] “CURRENT MODE VOLTAGE MODE” by Dr. Ray Ridley, Switching Power Magazine page 9, October 2000.
    [11] Robert Mammano, “Switching Power Supply Topology Voltage Mode vs. Current Mode”, Texas Instruments Incorporated, 1999.
    [12] “UC3842 Current Mode PWM Controller”, Texas Instruments Incorporated, 2003
    [13] “A New Small-Signal Model for Current-Mode Control” Raymond B. Ridley Copyright © 1999 Ridley Engineering, Incorporated.
    [14] R. Ridley, “Current Mode Control Modeling”, Switching Power Magazine, 2006
    [15] R. Ridley, “A new, continuous-time model for current-mode control,” IEEE Trans. Power Electron, vol. 6, no. 2, pp. 271–280, 1991.
    [16] “Practical Feedback Loop Analysis for Current-Mode Boost Converter” Texas Instrument Application Report, SLVA636 – March 2014
    [17] D. Johns and K. Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, 1997
    [18] B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill, 2001
    [19] R. Gregorain, “Introduction to CMOS OP-Amps and Comparators”, John Wiley & Sons, 1999.
    [20] C. F. Lee, and K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique” IEEE Journal of Solid-state circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004
    [21] C. S. Huang, C. H. Tsai, J. H. Wang, “Design and Verification of an Integrated Current Mode Switching Regulator,” IEEE Int. Symp. On VLSI Design, Automation, and Test, pp.1–4, Jun.2011.
    [22] H. Choi, “Practical Feedback Loop Design Considerations for Switched Mode Power Supplies” Fairchild Semiconductor Power Seminar, 2010 – 2011.
    [23] “Power supplies, power management, and battery management,” Maxim Integrated Products, Sunnyvale, CA.
    [24] “Power management,” Texas Instruments Incorporated, Dallas, TX.
    [25] S. Hsu, A. Brown, L. Rensink, and R. Middlebrook, “Modeling and analysis of switching Dc-to-Dc converters in constant frequency current programmed mode,” in Proc. IEEE Power Electronics Specialists Conference, 1979, pp. 284–301.
    [26] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch—Part I: Continuous conduction mode,” IEEE Trans. Aerospace Electron. Syst., vol. 26, pp. 490–496, May 1990.
    [27] A. Hastings, “The Art of Analog Layout. Englewood Cliffs,” NJ: Prentice-Hall, 2001.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE