| 研究生: |
顏昕皓 Yen, Hsin-Hao |
|---|---|
| 論文名稱: |
燒結促進劑對 Nd(Zn1/2Ti1/2)O3 陶瓷之微波介電特性之影響與其應用 Influence of Sintering Aids on Dielectric Properties of Nd(Zn1/2Ti1/2)O3 Ceramics and Their Applications at Microwave Frequency |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 燒結促進劑 、Nd(Zn1/2Ti1/2)O3 、微波介電特性 |
| 外文關鍵詞: | Sintering Aids, Nd(Zn1/2Ti1/2)O3, Microwave Frequency, Dielectric Properties |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將討論介電陶瓷材料Nd(Zn1/2Ti1/2)O3,添加不同燒結促進劑B2O3 、V2O5 與ZnO,探討燒結促進劑對Nd(Zn1/2Ti1/2)O3 其微波特性的影響及在高頻的應用。文獻顯示,原始的Nd(Zn1/2Ti1/2)O3 燒結溫度必須達到1330 ℃,此時可得介電特性εr~31.6, Q×f ~170000 (8.5GHz) ,τf ~-42 (ppm/oC)。由實驗結果發現,在1300℃燒結且添加0.70 wt% ZnO 於Nd(Zn1/2Ti1/2)O3 時,具有最佳的介電特性﹔εr ~32.26, Q×f ~128000 (7.7GHz),τf ~45 (ppm/oC) 的最佳特性,確實有達到降低燒結溫度之效果。
最後,本論文利用印刷電路板的方式,製作一個具有可調式零點的高頻帶通濾波器,操作頻段涵蓋2.0 GHz,使用之基板則分別為FR4 ,Al2O3 ,及添加了燒結促進劑ZnO 之Nd(Zn1/2Ti1/2)O3 三種材料。比較使用不同基板的濾波器響應以及元件尺寸,可以發現應用於同一電路上,具有高介電常數(εr)的自製基板可以達到縮小電路面積的效果,且有更好的濾波特性。
The influence of sintering aids on dielectric properties of Nd(Zn1/2Ti1/2)O3 ceramic at microwave frequency would be discussed in this paper. We expected to decrease the
sintering temperature of Nd(Zn1/2Ti1/2)O3 by adding three kinds of different sintering aids : Fe2O3、ZnO and V2O5 respectively.
The experiment results showed that adding 0.75 wt% ZnO could not only achieve the goal of reducing sintering temperature but also reach to the best dielectric properties amount three kinds of sintering aids. Adding 0.75 wt% ZnO has high dielectric constant(εr) of 32.26,Q×f ~128000 (7.7GHz) and τf ~-45 (ppm/oC) while reducing the sintering temperature from 1330 oC to 1300 oC.
In the end, we designed and fabricated a microstrip band pass filters with one tunable transmission zero in upper band of mid-band frequency 2.0 GHz on FR4 、Al2O3 and
Nd(Zn1/2Ti1/2)O3 + 0.75 wt% ZnO substrates. We could find that with the higher dielectric constant(εr) and Q×f , our filter could diminish the scale of size and demonstrate better frequency response.
[1] Okaya, Proc. IRE, vol.48, pp.1921, 1960.
[2] H. M. O’Brryan, JR. and J.Thomson, JR., J.Am.Ceram.Soc., vol. 57,pp.450, 1974.
[3] G. Wolfram and H. E. Gobel, Mat. Res. Bull. Vol.16, pp.1455, 1981.
[4] S. Nishgaki, H. Kato, S. Yano and R. Kamamura, Am. Ceram. Soc.Bull., vol.66,
pp.1405, 1987.
[5] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoonand H.-J Kim,
“Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values”,
J. Appl. phys., vol.33, pp.5466-5470,1994.
[6] R. D. Richtmyer, “Dielectric Resonator” J. Appl. phys., vol.10,pp.391-398, 1939.
[7] S. B. Cohn, “Microwave Bandpass Filters Contain High Q Dielectric Resonator”,
IEEE Trans. on MTT, pp.218-227, 1968.
[8] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176 期 90 年8 月.
[9] Darko Kajfez and Pierre Guillon, “Dielectric Resonators”, University of Mississippi.
[10] F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst.Mining. Met.
Engrs, pp.878-905, 1948.
[11] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s,”
IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[12] D. Kajfez, “Basic principle give understanding of dielectric waveguides and
resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[13] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,1989.
[14] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon and H.-J Kim,
“Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q
Values”, J. Appl. phys., vol.33, pp.5466-5470.
ii
[15] SCHAFFER SAXENA ANTOLOVICH SANDERS WARNER,“The Science and
Design of Engineering Materials”,Chap3.
[16] 肖定全,陶瓷材料,新文京開發出版,p49-55,2003.
[17] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York:
Consultants Bureau, 1970, ch. 4.
[18] W.J.Huppmann and G.Petzow “The Elementary Mechanisms of Liquid Sintering”,
Sintering Processes, Plenum Press, pp. 189-202, 1979.
[19] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[20] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering
of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[21] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp.
189-202, 1979.
[22] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[23] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[24] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J.
Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[25] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design.,
UK: Ellis Horwood, 1991.
[26] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
[27] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.
Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[28] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedancemattching,
networks, and coupling structures., New York: McGraw-Hill, 1980.
[29] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to
impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch., vol.
iii
MTT-20, pp. 573-578, Sep. 1980.
[30] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[31] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second
edition., Boston: Artech House, 1996.
[32] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop
r-esonators for cross-coupled planar microwave filters,” IEEE Trans.
MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[33] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley,
1991.
[34] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory
Tech, vol. MTT-27, pp.44-50, Jan.1979.
[35] International Telephone and Telegraph Corp., Reference Data for Radio Engineers,6th
Ed. Howard W. Sams Co., Inc.
[36] S. H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519, 1985.
[37] Yong Zhong Zhu and Yong Jun Xie, “New λ/2 Microstrip Bandpass Filters Using
Skew-Symmetric Feed Structure”, Microwave and Optical Technology Letters,Vol.
50, No. 2, pp.440-442 February 2008.
[38] Alexander Hennings, Elena Semouchkina, Amanda Baker, and George Semouchkin,”
Design Optimization and Implementation of Bandpass Filters With Normally Fed
Microstrip Resonators Loaded by High-Permittivity Dielectric”, IEEE Trans.
Microwave Theory Tech ,Vol.54 ,No.3 ,pp. 1253-1261, March 2006
[39] George I. Zysman and A. Kent Johnson ,”Couple Transmission Line Networks in an
Inhomogeneous Dielectric Medium”, IEEE Trans. Microwave Theory Tech ,Vol.
MTT-17 ,No.10,pp. 753-759, October 1969.
[40] M. Matsuo, H. Yabuki and M. Makimoto, “The Design Of a Half-wavelength
iv
Resonator BPF with Attenuation Poles at Desired Frequencies”, IEEE MIT-S Digest
pp.1181-1184,2000
[41] 傅坤幅, 微波陶瓷材料介電特性量測,工業材料, 132 期, 86 年12 月.
[42] 陳威銘, “微波平面U行微帶線帶通濾波器之研製,”國立成功大學電機工程系碩士
論文,1999.
[43] Ching-Fang Tseng, Cheng-Liang Huang, and Wen-Ruei Yang, “Dielectric
Characteristics of Nd(Zn1/2Ti1/2)O3 Ceramics at Microwave Frequency”, J. Am. Soc
89[4] 1465-1470, 2006
[44] Junichi TAKAHASHI, Keisuke KAGEYMA and Kouhei KODAIRA, “Microwave
Dielectric Properties of Lanthanide Titanate Ceramics”, Jpn J. Appl. Phys. Vol. 32, pp
4327-4331,September 1993.
校內:2058-07-16公開