| 研究生: |
黃景帆 Huang, Jing-Fang |
|---|---|
| 論文名稱: |
低溫氯化鋅-氯化1-乙基-3-甲基咪唑離子熔液在電化學上的應用 Electrochemical Applications of Low Temperature Zinc Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 離子熔液 、電化學 、奈米 、奈米孔洞 、電鍍 |
| 外文關鍵詞: | ionic liquid, electrochemistry, nano, nanoporous, electrodeposition |
| 相關次數: | 點閱:94 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
室溫離子熔液具有低蒸汽壓、高度熱穩定性、高度化學穩定性以及高導電度等令人感興趣的特性因此近幾年來受到高度的注目,另外離子熔液更被譽為一種”綠色溶劑”並用以取代傳統的有機溶劑在有機合成、分離科學以及電化學上的應用,其中最廣為人熟知的離子熔液系統是由氯化鋁陰離子(AlCl4-)以及氯化雙烷基咪(dialkylimidazolium chloride)所組成,儘管此一系統已被廣泛的使用然而此系統最大的問題來自於本身對於空氣及水的高度反應性,適當的選擇其他較穩定的陰離子取代氯化鋁陰離子可以改善此一問題改善。
在本論文中我們將報導一種新的低溫離子熔液,此種離子熔液是由氯化鋅(zinc chloride)以及氯化1-乙基-3-甲基咪(1-ethyl-3-methylimidazolium chloride)所組成(ZnCl2-EMIC),此一離子熔液的基本性質及應用將是本論文的主要內容,我們發現由於氯化鋅對水及空氣較為穩定因而此一離子熔液同樣也是對水及空氣穩定的離子熔液,另外此一離子熔液可被用來作為電鍍鋅及其合金的電鍍液,我們已經成功的利用此離子熔液製備出鋅、鋅錫、鋅鐵以及鋅鉑等合金,做為電鍍液而言,此一離子熔液最大的優點就是成功的消除一些傳統溶劑的缺點例如避免氫氣的產生以及非典型共鍍現象等。
此一離子熔液的應用更被擴展到一些先進材料的製備,例如奈米孔洞惰性金屬(nanoporous noble metals),在此我們提出一個簡單的電化學方法用以制備具有奈米結構的鉑及金電極,此方法是在ZnCl2-EMIC離子熔液中將電極表面進行合金以及去合金化的步驟進而在電極表面生成奈米結構,此一方法的好處是(1) 奈米尺寸可以透過電量控制改變合金比例來調整,(2) 去合金的步驟中避免了高腐蝕性的酸或鹼的使用,(3) 不需要極高溫環境,另外(4) 此一方可以用於任何一種與鋅能形成合金的金屬,此方法所制備的奈米孔鉑電極對於氫以及甲醇的氧化還原反應有顯著的催化效應,另外所制備的奈米孔金電極透過半胱胺酸(L-cysteine)在其表面上的自組裝吸附可以將其表面做修飾,經過修飾的奈米孔金電極已經被證實對於銅離子分析具有高靈敏度以及高選擇性。
Abstract
In recent years, ambient temperature ionic liquids have drawn enormous attention due to their attractive properties including negligible vapor pressure, high thermal and chemical stability, and high conductivity. Consequently, ionic liquids have been described as “green” solvents in place of molecular organic solvents for organic synthesis, separation, and electrochemical applications. The most well known ionic liquid system is the one consisting aluminum chloride anion and certain dialkylimidazolium cations. Although the aluminum chloride based ionic liquids have found wide applications, they are highly moisture/air-sensitive. This problem is circumvented by replacing the aluminum chloride anion with other anions to produce ionic liquids that are water/air-stable.
In this thesis, we have reported the new low temperature ionic liquids result from the combination of zinc chloride and 1-ethyl-3-methylimidazolium chloride. The main content is concentrated in the characterization and applications of this melt. We found this melt is also an air and water stable ionic liquid due to ZnCl2 is insensitive to the air and moisture and the acidic melt are potentially useful for the electrodeposition of zinc and zinc-containing alloys. The preparation of zinc and zinc-containing alloys coatings, including ZnSn, ZnFe, and PtZn alloys, has been conduct with this melt. The main advantage are eliminating the challenge of hydrogen evolution and the anomalous co-deposition behavior
The application of this melt is extended to the fabrication of advanced materials, eq. nanoporous noble metals. A simple electrochemical strategy is described to prepare high surface area nanostructured platinum and gold electrode by alloying and dealloying of MZn (M = Pt or Au) in a Lewis acidic ZnCl2-EMIC ionic liquid. Some of the general advantages of the method include (1) the nano-size can be manipulated by varying the quantity of MZn surface alloy through the electrodeposition charge, (2) no corrosive acids or bases were used for the dealloying, (3) extremely high working temperature is not required, and (4) applicability to any other system that forms surface alloy with Zn. The resulting nanoporous Pt electrode showed significantly enhanced current for hydrogen and methanol redox reactions. The nanoporous Au surface could be functionalized with SAMs of L-cysteine and the potential utility of the modified nanoporous Au for sensors was demonstrated by its excellent sensitivity and selectivity for the electrochemical determination of Cu(II).
References
1. K. R. Seddon, J. Chem. Tech. Biotechnol., 68, 351 (1997).
2. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 29, 3772 (2000).
3. R. D. Rogers and K. R. Seddon, Science, 302, 792 (2003).
4. G. Delarue, J. Electroanal. Chem, 1, 285 (1959).
5. J. M. Schafir and J. A. Plambeck, Can. J. Chem., 48, 2131 (1970).
6. L. G. Boxall, H. L. Jones and R. A. Osteryoung, J. Electrochem. Soc. Electrochemical Science and Technology, 120, 223 (1973).
7. I-W. Sun, A. G. Edwards and G. Mamantov, J. Electrochem. Soc., 140, 2733 (1993).
8. G. R. Stafford, J. Electrochem. Soc., 141, 945 (1994).
9. G. Mamantov, G. –S. Chen, H. Xiao, Y. Yang and E. Hondrogiannis, J. Electrochem. Soc., 142, 1758 (1995).
10. P. C. Ray, J. N. Rakshit, J. Chem. Soc. 1470 (1911).
11. P. Walden, Bull. Acad. Imper. Sci., 1800 (1914).
12. S. Sugden, H. Wilkins, J. Chem. Soc., 1291 (1929).
13. D. F. Evans, S.-H. Chen, G. W. Schriver, E. M. Arnett, J. Am. Chem. Soc., 103, 481 (1981).
14. F. H. Hurley, U. S. Patent 2446331, (1948).
15. F. H. Hurley, T. P. Wier, Jr., J. Electrochem. Soc., 98, 207 (1951).
16. J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc., 101, 323 (1979).
17. R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi, and C. L. Hussey, J. Electrochem. Soc., 126, 1644 (1979).
18. J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem., 21, 1263 (1982).
19. A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, and J. L. Williams, J. Phys. Chem., 88, 2614 (1984).
20. M. Lipsztajn and R. A. Osteryoung, J. Electrochem. Soc., 130, 1968 (1983).
21. W. W. Porterfield and J. T. Yoke, in “Advances in Chemistry Series”, No. 150, Chapter 10, American Chemical Society, Washington, D. C. (1976).
22. C. L. Hussey, in “Advance in Molten Salt Chemistry”, Vol. 5, G. Mamantov, Editor, pp. 185, Elservier Science Publishing Co., Amsterdam (1983).
23. C. L. Hussey, Pure Appl. Chem., 60, 1763 (1988).
24. C. L. Hussey, in “Chemistry of Nonaqueous Solutions-Current Progress”, G. Mamantov and A. I. Popov, Editors, pp. 227, VCH, Amsterdam (1983).
25. S. Geetha, and D. C. Trivedi, Bull. Electrochem., 19, 37 (2003).
26. T. P. Moffat, J. Electrochem. Soc., 141, L115 (1994).
27. G. R. Stafford, J. Electrochem. Soc., 136, 635 (1989).
28. T. P. Moffat, J. Electrochem. Soc., 141, 3059 (1994).
29. G. M. Janowski and G. R. Stafford, Met. Trans., 23A, 2715 (1992).
30. R. T. Carlin, P. C. Trulove, and H. C. De Long, J. Electrochem. Soc., 143, 2747 (1996).
31. J. A. Mitchell, W. R. Pitner, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc., 143, 3448 (1996).
32. M. R. Ali, A. Nishikata, and T. Tsuru, Electrochim. Acta, 42, 1819 (1997).
33. W. R. Pitner, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc., 143, 130 (1996).
34. B. J. Tierney, W. R. Pitner, J. A. Mitchell, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc., 145, 3110 (1998).
35. H. C. De Long, J. A. Mitchell, P. L. Hagans, R. T. Carlin, and G. R. Stafford, P. C. Trulove, Preceedings of 11th International Symposium on Molten salt, PV 98-11, The Electrochemical Society, Pennington, NJ. 1988, P. 40.
36. M. Matsunaga, M. Morimitsu, M. Nagano, and T. Tsuda, Molten Salt Forum, 5-6, 601 (1998).
37. R. T. Carlin, H. C. De Long, J. Fuller, and P. C. Trulove, J. Electrochem. Soc., 145, 1598 (1998).
38. Y.–F. Lin and I–W. Sun, Electrochem. Acta, 44, 2771 (1999).
39. N. Koura, T. Umebayash, Y. Idemoto, and G. Ling, Electrochemistry, 67, 684 (1999).
40. M. K. Carpenter and M. W. Verbrugge, J. Electrochem. Soc., 137, 127 (1990).
41. M. C. Lin, P. Y. Chen, and I-W. Sun, J. Electrochem. Soc., 148, C653 (2001).
42. M. H. Yang, M. C. Yang, and I-W. Sun, J. Electrochem. Soc., 150, C544 (2003).
43. J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc. Chem. Commun., 965 (1992).
44. J. Fuller, R. T. Carlin, H. C. DeLong, and D. Haworth, J. Chem. Soc. Chem. Commun., 299 (1994).
45. V. R. Koch, C. Nanjundiah, G. B. Appetecchi, and B. Serosati, J. Electrochem. Soc., 142, L116 (1995).
46. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, Inorg. Chem., 35, 1168 (1996).
47. K. R. Seddon, A. Stark, and M.-J. Torres, Pure. Appl. Chem., 72, 2275 (2000).
48. C. C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel, and R. Haag, Angew. Chem. Int. Ed., 41, 3964 (2002).
49. S. V. Dzyuba and R. A. Bartsch, Angew. Chem. Int. Ed., 42, 148 (2003).
50. J. Dupent, R. F. deSouza, and P. A. Z. Suarez, Chem. Rev., 102, 3667 (2002).
51. H. M. Luo, S. Dai, and P. V. Bonnesen, Anal. Chem., 76, 2773 (2004).
52. T. Welton, Chem. Rev., 99, 2071 (1999).
53. D. Zhao, M. Wu, Y. Kou, and E. Min, Catal. Today, 74, 157 (2002).
54. H. Olivier-Bourbigou and L. Magna, J. Mol. Catal. A, 182, 419 (2002).
55. P. Wasserscheid, in “Ionic Liquid in Synthesis”, T. Welton, Editor, VCH-Wiley, Weinhein, Germany (2002).
56. U. Karagel, M. Eckstein, and N. Kaftzik, Curr. Opin. Biotechnol., 13, 565 (2002).
57. F. van Rantwijk, R. M. Lau, and R. A. Sheldon, Trends. Biotechnol., 21, 131 (2003).
58. J. Hoffmann, M. Nuchter, B. Ondruschka, and P. Wasserscheid, Green Chem., 5, 296 (2003).
59. S. I. Hsiu, J. F. Huang, I. W. Sun, C. H. Yuan, and J. Shiea, Electrochim. Acta, 47, 4367 (2002).
60. P.-Y. Chen and I-W. Sun, Electrochim. Acta, 46, 1169 (2001).
61. P.-Y. Chen, M.-C. Lin, and I-W. Sun, J Electrochem. Soc., 147, 3350 (2000).
62. J.-F. Huang and I-W. Sun, J Electrochem. Soc., 149, E348 (2002).
63. J.-F. Huang and I-W. Sun, J Electrochem. Soc., 150, E299 (2003).
64. J.-F. Huang and I-W. Sun, J Electrochem. Soc., 151, C8 (2004).
65. J.-F. Huang and I-W. Sun, Electrochim. Acta, 49, 3251 (2004).
66. J.-F. Huang and I-W. Sun, Chem. Mater., 16, 1829 (2004).
67. J.-F. Huang and I-W. Sun, Adv. Fun. Mater., 15, 989 (2005).
68. R. J. Gale. B. Gilbert, and R. A.Osteryoung, Inorg. Chem., 17, 2728 (1978).
69. E. Ryteer, H. A. Oye, S. J. Cyvin, B. N. Cyvin, and P. J. Klaelboe, J. Inorg. Nucl. Chem., 35, 1185 (1973).
70. R. J. Gale and R. A. Osteryoung, Inorg. Chem., 19, 2242 (1980).
71. J. L. Gray and G. E. Maciel, J. Am. Chem. Soc., 103, 7147 (1981).
72. T. Matsumoto and K. Ichikawa, J. Am. Chem. Soc., 106, 4316 (1984).
73. J. S. Wilkes, J. S. Frye, and G. F. Reynolds, Inorg. Chem., 22, 3870 (1983).
74. C. L. Hussey, T. B. Scheffler, J. S. Wilkes, and A. A. Fannon, Jr., J. Electrochem. Soc., 133, 1389 (1986).
75. J. P. Schoebrechts and B. P. Gilbert, J. Electrochem. Soc., 128, 2679 (1981).
76. Z. J. Karpinski and R. A. Osteryoung, Inorg. Chem., 24, 2259 (1985).
77. M. Lipsztajn and R. A. Osteryoung, J. Electrochem. Soc., 132, 1126 (1985).
78. L. Heerman and W. D'Olieslager, Inorg. Chem., 24, 4704 (1985).
79. C. L. Hussey, L. A. King, and J. S. Wilkes, J. Electroanal. Chem., 102, 321 (1979).
80. M. Lipsztajn and R. A. Osteryoung, J. Electrochem. Soc., 130, 1968 (1983).
81. A. Brenner, Electrodeposition of Alloys, Principle and Practice, Chapter 23, Academic Press, New York (1963).
82. R. Winand, in Modern Electroplating, M. Schlesinger and M. Paunovic, Editors, Chapters 10, John Wiley and Sons, New York (2000).
83. S. Vitkova, V. Ivanova, and G. Raichevsky, Surf. Coat. Technol., 82, 226 (1996).
84. D. Mandeler and A. J. Bard., J. Electroanal. Chem., Interfacial Electrochem., 307, 217 (1991).
85. Y. Castrillejo, M. A. Garcia, A. M. Martinez, C. Abejon, P. Pasquer, and G. Picard, J. Electroanal. Chem., 434, 23 (1997)
86. X.-H. Xu and C. L. Hussey, J. Electrochem. Soc., 140, 618 (1993).
87. R. Winard, J. Appl. Electrochem., 31, 377 (1991).
88. G. D. Wilcox and D. R. Gabe, Corrs. Sci., 35, 1251 (1993).
89. K. Kondo, S. Hinotani, and Y. Ohmori, J. Appl. Electrochem., 18, 154 (1988).
90. Y. Liao, D. R. Gabe, and G. D. Wilcox, Plat. Surf. Finish., 3, 60 (1998).
91. E. Gomez, E. Pedaez, and E. Valles, J. Electroanal. Chem., 469, 139 (1999).
92. Z. Zhang, W. H. Leng, H.-B. Shao, J. Q. Zhang, J. M. Wang, and C. N. Cao, J. Electroanal. Chem., 516, 127 (2001).
93. S. L. Diaz, O. R. Mattos, O. E. Barcia, and F. J. F. Miranda, Electrochim. Acta, 47, 4091 (2002).
94. E. A. Maleeva, K. S. Pedan, and I. I. Ponomarev, Russ. J. Electrochem., 32, 1380 (1996).
95. J. H. O. J. Wijenberg, J. T. Stevels, and J. H. W. de Wit, Electrochim. Acta, 43, 649 (1997).
96. C. C. Hu, A. Bai, J. Electrochem. Soc., 149, C615 (2002).
97. J. K. A. Clark, Chem. Rev., 75, 291 (1975).
98. Y. Morimoto, E. B. Yeager, J. Electroanal. Chem., 441, 77 (1998).
99. H. N. Dinh, X. M. Ren, F. H. Garzon, P. Zelenay, and S. Gottesfield, J. Electroanal. Chem., 491, 222 (2000).
100. Y. Morimoto and E. B. Yearger, J. Electroanal. Chem., 444, 95 (1998).
101. M. J. González, C. T. Hable, and M. S. Wrighton, J. Phys. Chem. B, 102, 9981 (1998).
102. S. Rani, A. Jayaraman, L. D. Sharma, G. M. Dhar, T. S. R. P. Rao, J. Electroanal. Chem., 495, 62 (2000).
103. J. A. Rodriguez, J. Phys. Chem., 98, 5758 (1994).
104. J. A. Rodriguez and M. Kuhn, J. Phys, Chem., 100, 381 (1996).
105. M. Consonni, D. Jokic, D. Y. Murzin, R. Touroude, J. Catal., 188, 165 (1999).
106. W. B. Harding, Surf. Finish., 65, 30 (1978).
107. Y. Okano, A. Katagiri, J. Electrochem. Soc., 144, 1927 (1997).
108. G. C. Bond and D. T. Thompson, Catal. Rev., 41, 319 (1999).
109. S. H. Joo, S. J. Choi, K. J. Kwa, Z. Liu, Nature, 412, 169 (2001).
110. T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem., 75, 2080 (2003).
111. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J.-H. Wang, Science, 278, 838 (1997).
112. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, Nature, 401, 458 (1999).
113. P. Jiang, J. F. Bertone, V. L. Colvin, Science, 291, 453 (2001).
114. D. V. Pugh, A. Dursun, S. G. Corcoran, J. Mater. Res., 18, 216 (2003).
115. R. C. Newman, S. G.. Corcoran, J. Erlebacher, M. J. Aziz, and K. Scieradzki, MRS Bull., 24, 24 (1999).
116. J. L. West and N. J. Halas, Annu. Rev. Biomed. Eng., 5. 285 (2003).
117. Y. Ding and J. Erlebacher, J. Am. Chem. Soc., 125, 7772 (2003).
118. A. J. Forty, Nature, 282, 597 (1979).
119. C. Ji and P. C. Searson, J. Phys. Chem. B, 107, 4494 (2003).
120. J. Liu, X. Feng, G. Z. Fryxell, L.-Q. Wang, A. Y. Kim, M. Gong, Adv. Mater, 10, 161 (1998).
121. A. IlMan, Chem Rev., 96, 1533 (1996).
122. T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, Analyst, 122, 43R (1997).
123. A. J. Bard and L. R. Faulkner, “ Electrochemical Methods: Fundamentals and Applications”, John Wiley & Sons, New Yorks (2000).
124. W. M. MacNevin and B. B. Baker, Anal. Chem., 24, 986 (1952).
125. E. Budevski, G. Staikov, W. J. Lorenz, Electrochim. Acta, 45, 2559 (2000).
126. G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, J. Electroanal. Chem., 138, 225 (1982).
127. G. Gunawardena, G. Hill and I. Montenegro, J. Electroanal. Chem., 138, 241 (1982).
128. G. Gunawardena, G. Hill and I. Montenegro and B. Scharifker, J. Electroanal. Chem., 138, 255 (1982).
129. G. Gunawardena, G. Hill and I. Montenego, J. Electroanal. Chem., 184, 357 (1985).
130. G. Gunawardena, G. Hill and I. Montenego, J. Electroanal. Chem., 184, 371 (1985).
131. A. Milchev, S. Stoyanov and R. Kaischev, Thin Solid Films, 22, 255 (1974).
132. A. Milchev and E. Vassileva, J. Electroanal. Chem., 107, 337 (1980).
133. G. J. Hills, D. J. Schiffrin and J. Thompson, Electrochim Acta, 19, 657 (1974).
134. I. Markov, Thin Solid Films, 35, 11 (1976).
135. I. Markov and E. Stoycheva, Thin Solid Films, 35, 21 (1976).
136. V. Tsakova and A. Milchev, J. Electroanal. Chem., 197, 359 (1986).
137. A. Milchev, V. Tsakova, T. Chierchie, K. Jüttner and W. J. Lorenz, Electrochim. Acta, 31, 971 (1986).
138. B. R. Scharifker and G. Hills, Electrochim. Acta, 28, 879 (1983).
139. L. R. Simonsen, F. M. Donahue, Electrochim. Acta, 35, 89 (1990).
140. M. Masuda, H. Takenishi, A. Katagiri, J. Electrochem. Soc., 148, C59 (2001).
141. J. Robinson, R. A. Osteryoung, J. Electrochem. Soc. 127, 122 (1980).
142. H. B. Michaelson, in: R. C. Weast (Ed.), Handbook of Chemistry and Physics, 65th ed., CRC Press, Boca Raton, FL, 1984, p. E76.
143. W. R. Pitner, C. L. Hussey, J. Elecrochem. Soc. 144, 3095 (1997).
144. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., p. 288, Wiley, New York (1988).
145. Q. Zhu, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc., 143, 130 (1996).
146. Binary Alloy Phase Diagrams, T. B. Massalski, Editor, American Society for Metals, Metals Park, OH (1986).
147. H. B. Michaelson, in Handbook of Chemistry and Physics, 65th ed., R. C. Weast, Editor, p. E76, CRC Press, Boca Raton, FL (1984-85).
148. E. A. Maleeva, K. S. Pedan, and I. I. Ponomarev, Russ. J. Electrochem., 32, 1380 (1996).
149. J. H. O. J. Wijenberg, J. T. Stevels, and J. H. W. De Wit, Electrochim. Acta, 43, 649 (1997).
150. R. Vidu and S. Hara, Surf. Sci., 452, 229 (2000).
151. M. H. Holzle, U. Retter, and D. M. Kolb, J. Electroanal. Chem., 371, 101 (1994).
152. M. Alanyalioglu, H. Cakal, A. E. Oztirk, and U. Demir, J. Phys. Chem., 105, 10588 (2001).
153. L. H. Mendoza-Huizar, J. Robles, and M. Palomar-Pardave, J. Electroanal. Chem., 521, 95 (2002).
154. B.G. Anex and N. Takeuchi, J. Am. Chem. Soc., 96, 4411 (1974)
155. F. Andres, M. Bukowski, R. Hempelmann, and H. Natter, Angew. Chem. Int. Ed., 42, 3428 (2003).
156. F. A. de Bruijn, B. F. Kuster, and G. B. Marin, Appl. Catal. A, 145, 351 (1996).
157. K. L. Yang, S. Yiacoumi, and C. Tsouris, Nano Lett., 2, 1433 (2002).
158. R. Parsons and T. J. Van der Noot, J. Electroanal. Chem., 9, 257 (1988).
159. E. Herrero, K. Franaszczuk, and A. Wieckowski, J. Phys. Chem., 98, 5074 (1994).
160. S. Trasatti, and O. A. Petrii, Pure Appl. Chem., 63, 711 (1991).
161. S.-S. Wong, and M. D. Porter, J. Electroanal. Chem., 485, 135 (2000).
162. A. C. Liu, D. C. Chen, C. C. Lin, H. H. Chou, and C. H. Chen, Anal. Chem., 71, 1549 (1999).