| 研究生: |
邱詣智 Qiu, Yi-Zhi |
|---|---|
| 論文名稱: |
具低電磁干擾輸出級0.35mA靜態電流0.00075% THD+N之D類放大器 A 0.35mA-Quiescent-Current 0.00075%-THD+N Class-D Amplifier with Low-EMI Power Stage |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 混疊失真 、音頻放大器 、D類放大器 、電磁干擾 、頻率等化 、脈寬調變 、總諧波失真加雜訊 、靜態電流 |
| 外文關鍵詞: | Aliasing distortion, audio amplifier, Class-D amplifier, electromagnetic interference (EMI), frequency equalization, pulse-width modulation (PWM), total harmonic distortion plus noise (THD+N), quiescent current |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文實現一個低電磁干擾、低靜態電流、低總諧波失真加雜訊之D類音頻放大器。本文詳細分析並最佳化具頻率等化之脈寬調變殘餘混疊失真抑制技術及CMFBD模式輸出級之輸出共模校正技術,此外,亦提出無窄波CMFBD調變技術。
具頻率等化之脈寬調變殘餘混疊失真抑制技術藉由低複雜度前饋式頻率等化來解決之前技術相位偏移的問題,使得放大器可以在低切換頻率下有效抑制脈寬調變殘餘混疊失真,而同時達到低失真、低靜態電流,論文中除了分析前作之相位偏移問題外,亦藉由分析、推導迴圈濾波器相關公式以最佳化失真抑制能力、靜態電流消耗、雜訊。而CMFBD輸出級之輸出共模校正技術則是降低該輸出級在製程變異之下所導致的共模高頻突波,以達到更低之共模電磁干擾。此外,所提出的無窄波CMFBD調變技術解決原CMFBD調變在低輸出功率所面臨窄波導致的高失真問題,此技術藉由低複雜的邏輯電路調整功率級控制信號以消除窄波,使得失真大幅降低。
本論文之D類音頻放大器晶片實現於0.18微米技術,驗證結果顯示在5伏特之電源電壓、8歐姆負載下可達到0.00075%之最低總諧波失真加雜訊且僅消耗0.35毫安培之靜態電流,與現有最佳文獻之D類音頻放大器相比可達最低之靜態電流消耗及最佳之品質因數3560,分別比現存最佳值改善15%及44%。此外,相較於傳統CMFBD功率級,輸出共模校正技術可額外抑制輸出共模在30MHz~1GHz頻帶內最大值達10dB。而在使用所提出之無窄波CMFBD調變時,低輸出功率之總諧波失真加雜訊及動態範圍皆可改善20dB。
In this thesis, a low-electromagnetic-interference (EMI), low-quiescent-current, low-total-harmonic-distortion-plus-noise (THD+N) Class-D is realized, and the frequency-equalized PWM-residual-aliasing reduction (FE-PRAR) technique as well as the common-mode output correction for common-mode-free BD (CMFBD) power stage are comprehensively analyzed and optimized; moreover, a narrow-pulse-free CMFBD modulation is proposed. The FE-PRAR technique utilizes a low-complexity feedforward frequency equalization path to compensate the phase shift in the prior art, permitting the amplifier to effectively suppress the PWM-residual-aliasing distortion without using high switching frequency (fSW), leading to both low distortion and low quiescent current consumption. In this thesis, the phase-shift issue in the prior art is analyzed in detail, and the loop filter design with FE-PRAR technique is optimized for better distortion suppression, lower quiescent current and lower noise. On the other hand, to lower the common-mode EMI, the common-mode output correction technique for CMFBD power stage reduces the common-mode output spikes resulted from process variation. The analysis and design of the common-mode output correction loop is also provided in the thesis. In addition, the proposed narrow-pulse-free (NPF) CMFBD modulation resolves the narrow-pulse problem at low output power in the conventional CMFBD modulation. The technique exploits simple logics to reshape the control signal of the power stage for the elimination of narrow pulses, leading to a greatly-suppressed THD+N.
Fabricated with the 0.18-μm process, this work with a supply of 5 V and a speaker load of 8 Ω achieves the minimal THD+N of 0.00075% while consuming a low quiescent current of 0.35 mA. Compared with state-of-the-art Class-D audio amplifiers, this work features the lowest quiescent current and the highest figure-of-merit of 3560, surpassing prior arts by 15% and 44%, respectively. In addition, the common-mode output correction technique further reduces the maximal magnitude of common-mode output spectrum within the range of 30 MHz to 1 GHz by 10 dB. Furthermore, with the proposed NPF-CMFBD modulation, both the THD+N at low output power and the dynamic range are improved by 20 dB.
[1] K. H. Chen and Y. S. Hsu, “A high-PSRR reconfigurable class-AB/D audio amplifier driving a hands-free/receiver 2-in-1 loudspeaker,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2586–2603, Nov.2012.
[2] S. -H. Chien, Y. -W. Chen and T. -H. Kuo, “A low quiescent current, low THD+N class-D audio amplifier with area-efficient PWM-residual-aliasing reduction,” IEEE J. Solid-State Circuits, vol. 53, no. 12, pp. 3377-3385, Dec. 2018.
[3] L. Guo, T. Ge, and J. S. Chang, “A 101 dB PSRR, 0.0027% THD + N and 94% power-efficiency filterless class D amplifier,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2608–2617, Nov. 2014.
[4] I. D.Mosely, P. H. Mellor, and C. M. Bingham, “Effect of dead time on harmonic distortion in class-D audio power amplifiers,” Electron. Lett., vol. 35, no. 12, pp. 950–952, June 1999.
[5] J.-M. Liu, S.-H. Chien, and T.-H. Kuo, “A 100W 5.1-channel digital class-D audio amplifier with single-chip design,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1344-1354, June 2012.
[6] M. Wang, X. Jiang, J. Song, and T. L. Brooks, “A 120dB dynamic range 400mW class-D speaker driver with fourth-order PWM modulator,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1427–1435, Aug. 2010.
[7] T.-H.Kuo, S.-H.Chien, J.-J. Huang, Y.-W. Chen and Y.-A. Lee, “A 2.4 mA quiescent current, 1 W output power class-D audio amplifier with feed-forward PWM-intermodulated-distortion reduction,” IEEE J. Solid-State Circuits, vol. 51, no.6, pp.1436-1445, June. 2016.
[8] S. -H. Chien, T.-H. Kuo, H.-Y. Huang, H.-B. Wang, and Y.-Z. Qiu, “A 0.41mA quiescent current, 0.00091% THD+N class-D audio amplifier with frequency equalization for PWM-residual-aliasing reduction,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 352-353.
[9] M. A. Teplechuk, T. Gribben, and C. Amadi, “True filterless class-D audio amplifier,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2784–2793, Dec.2011.
[10] H. W. Ott, Electromagnetic Compatibility Engineering, Hoboken, New Jersey: John Wiley & Sons, 2009.
[11] P. P. Siniscalchi and R. K. Hester “A 20 W/channel class-D amplifier with near-zero common-mode radiated emissions” IEEE J. Solid-State Circuits, vol. 40, no. 12 Dec. 2009.
[12] P. Balmelli, J. M. Khoury, E. Viegas, P. Santos, V. Pereira, J. Alderson, and R. Beale “A low-EMI 3-W audio class-D amplifier compatible with AM FM radio” IEEE J. Solid-State Circuits, Vol. 48, no. 8, Aug 2013
[13] Texas Instruments, “4.0-W class-D mono audio amplifier with class-G boost and speaker sense” TAS2552 datasheet, Jan. 2014 [Apr. 2015]
[14] Texas Instruments, “5.7-W class-D mono audio amplifier with class-H boost and speaker sense” TAS2555 datasheet, Aug. 2015 [Nov. 2016]
[15] X. Jiang, J. Song, M. Wang, J. Chen, and S. K. Arunachalam “Integrated pop-click noise suppression, EMI reduction, and short-circuit detection for class-D audio amplifiers” IEEE J. Solid-State Circuits, Vol. 48, no. 4, April 2013
[16] L. Dooper and M. Berkhout, “A 3.4 W digital-in class-D audio amplifier in 0.14μm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1524–1534, Jul. 2012.
[17] S.-H. Chien, L.-T. Wu, S.-Y. Chen, R.-D. Jan, M.-Y. Shih, C.-T. Lin, and T.-H. Kuo, “An open-loop class-D audio amplifier with increased low-distortion output power and PVT-insensitive EMI reduction,” in IEEE Custom Integrated Circuits Conference (CICC), Sept. 2014, pp. 1-4.
[18] Y. -A. Lee, “A low-EMI class-D audio amplifier with output common-mode correction” M. S. thesis, Nation Cheng-Kung University, Tainan, Republic of China (ROC)
[19] K. Nielsen. “A review and comparison of pulse width modulation (PWM) methods for analog and digital input switching power amplifiers,” in Proc. 102th AES Convention, pp. 22-25, Sep. 1997.
[20] M. Kinyua, R. Wang and E. Soenen, “Integrated 105 dB SNR, 0.0031% THD+N class-D audio amplifier with global feedback and digital control in 55 nm CMOS,” IEEE J. Solid-State Circuits, vol. no.8,pp.1764-1771, Aug. 2015
[21] Texas Instruments, “3-W, ultra-low EMI, filterless, mono, class D audio power amplifier with spread spectrum,” LM48511 datasheet, July. 2007 [Revised Oct. 2017].
[22] Texas Instruments, “Audio power amplifier series ultra-low EMI, filterless, 1.2W stereo class D audio power amplifier with E2 S and Texas Instruments 3D enhancement” LM48413 datasheet, Nov. 2008 [Mar. 2013]
[23] X. Jiang, J. Song, D. Cheung, M. Wang, and S. Arunachalam, “ Integrated class-D audio amplifier with 95% efficiency and 105 dB SNR ,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2387–2396, Nov. 2014.
[24] W. -C Wang, Y.-H Lin, “A 0.0004% (-108dB) THD+N, 112dB-SNR, 3.15W fully differential class-D audio amplifier with Gm noise cancellation and negative output-common-mode injection techniques,” in ISSCC Dig. Tech. Papers, pp. 58-59, Feb 2018.
[25] M. Berkhout, L. Breems, and E. van Tuijl, “Audio at low and high power,” in Proc. 34th ESSCIRC, 2008, pp. 40–49.
[26] A. Nagari, E. Allier, F. Amiard, V. Binet and C. Fraisse, “An 8Ω 2.5W 1%-THD 104dB(A)-dynamic-range class-D audio amplifier with an ultra-low EMI system and current sensing for speaker protection,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 92-94.
校內:不公開