| 研究生: |
施啟煌 Shih, Chi-Huang |
|---|---|
| 論文名稱: |
無線網際網路上運用數據壅塞控制協定的視訊傳輸之研究 Study on DCCP-based Video Transmission over Wireless Internet |
| 指導教授: |
謝錫堃
Shieh, Ce-Kuen 黃文祥 Hwang, Wen-Shyang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 數據壅塞控制 、影像傳輸 、封包轉換 、無線網際網路 |
| 外文關鍵詞: | Wireless Internet, Packetization, Video transmission, Datagram congestion control protocol |
| 相關次數: | 點閱:147 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對無線網際網路上傳輸即時串流視訊的相關應用發展了一套運用數據壅塞控制協定(datagram congestion control protocol; DCCP)的影像傳送系統,並採用MPEG-4視訊以實現整體系統的開發。設計此套基於DCCP的影像系統主要的挑戰在於須將傳統的影像系統元件如影像來源編碼、通道錯誤編碼和封包轉換與包含有TCP友好速率控制(TCP-friendly rate control; TFRC)以及局部檢查碼覆蓋(partial checksum coverage)的新型DCCP特性此兩者做ㄧ功能整合以完成影像視訊在無線網路上的編碼及傳輸。在DCCP所提供的新型特性中,TFRC為一針對多媒體應用所設計的壅塞控制機制,其旨在藉由採用與TCP相似的傳輸量調整方式以期減少可能發生的封包遺失與傳輸延遲而能有助於串流視訊在網際網路上的傳輸。另ㄧ方面,封包的局部檢查碼覆蓋則是允許接收端的DCCP傳遞已被錯誤損壞的封包到應用程式而非直接將損壞的封包丟棄; 此類包含有損壞資料的封包可以進ㄧ步由抗錯性編碼方式(error-resilient coding)所加以利用而增加影像在接收端的有效資料量。為了解決上述整合應用層的影像系統元件與傳輸層的DCCP所產生的實際困難,本論文提出了ㄧ個在無線網際網路上運用DCCP的影像傳輸架構並且著重在適應性速率控制以及高效能的封包轉換這兩種解決方案。
在無線網際網路上傳送基於DCCP傳輸架構的串流視訊最主要的需求就是原始影像經由影像來源編碼及通道錯誤編碼後的影像資料量必須要跟TFRC所得出的網路傳輸資料量吻合以確保TCP友好的特性。除了速率吻合的需求外,觀看網路視訊的使用者通常要求在各種不同的網路狀況下必須保持ㄧ個高品質而流暢的影像輸出。因此,我們首先在論文裡提出一個整合式的速率控制機制,此機制所達成的速率吻合具備了可受控制的傳輸緩衝延遲並且能夠減少影像壓縮在輸出速率限制下所造成的畫面跳躍情況。此外,DCCP/TFRC的資料流使用變動的封包長度可以在無線環境中達到較為堅實可靠的視訊傳輸,但是不固定大小的封包在網路上傳輸時卻不利於保持TCP友好的特性。因此,在不改變傳輸封包大小的條件下,我們提出了一個封包內分段的機制將DCCP封包虛擬的切割成數個資料段,並且利用媒體存取控制層(medium access control; MAC)會因傳輸錯誤而觸發的封包重送來回復先前損壞的資料段。基於這種方式,此封包內分段的機制可以在無線傳輸上提供更有效率的資料回復功能,同時也能夠保留住DCCP資料流所應具備的TCP友好特性。經由廣泛的實驗結果已驗證了本論文所提出的整合性速率控制機制與封包內分段的封包轉換機制在各種網路情況下的有效性。最後,在我們成功的系統整合之下,本論文所發展出的基於DCCP架構之視訊傳輸系統可以保有較佳的畫面流暢度並且大幅提升了在無線網際網路下的視訊傳輸品質進而能夠帶給使用者兼具順暢以及高品質的影像觀賞經驗。
This dissertation develops a video transmission system based on datagram congestion control protocol (DCCP) to transport real-time streaming video over wireless Internet and focuses on MPEG-4 video in realizing the system design. The main challenge of the DCCP-based video system is to integrate the system components such as the source coding, channel coding and packetization strategy, with new DCCP features including TCP-friendly rate control (TFRC) and partial checksum coverage for wireless video coding and transmission. TFRC is a congestion control mechanism designed for multimedia flows and aims to benefit the Internet-based video streaming by adapting the system transmission rate to the network congestion level in a TCP-friendly manner to reduce the potential packet loss and delays. On the other hand, the partial checksum coverage allows DCCP to forward the error-corrupted packets instead of dropping them and accordingly facilitates the error-resilient source coding to increase video goodput. In addressing the practical difficulties involved in integrating video system components in the application domain with DCCP in the transport domain, this dissertation presents a DCCP-based video transport architecture for wireless video with emphasis on adaptive source coding and efficient packetization.
Delivering DCCP-based video over the wireless Internet primarily requires the rate matching between the source/channel coding and TFRC transport service to ensure TCP-friendliness. In addition to the rate matching requirement, users demand a high-quality, smooth media output under the varying network conditions. Accordingly, an integrated rate control scheme is first proposed to meet the rate matching with the controlled transmission buffering delay and reduce the frame skipping. Also, DCCP/TFRC flows with variable packet size are beneficial to robust video transmission in the wireless environment but adversely affect the TCP-friendliness feature. Without adapting packet size to the varying channel errors, we present an in-packet segmentation scheme to virtually divide the DCCP packet into segments, and recover the erroneous segments through the MAC-level retransmissions. As a result, the proposed in-packet segmentation scheme is more efficient in data recovery over wireless channels while preserving the TCP-friendliness of DCCP-based video flows. The extensive experiment results have demonstrated the utility of the two proposed schemes under the varying network conditions. Through the successful system integration, the developed DCCP-based video system better preserves the motion smoothness, and improves the overall perceptual quality for wireless video transmissions to obtain a smooth, high visual quality video experience.
[1] Handley, M., Floyd, S., Pahdye, J., and Widmer, J., “TCP Friendly Rate Control (TFRC): Protocol Specification,” RFC3448, January 2003.
[2] Eddie Kohler, Mark Handley, Sally Floyd, and Jitendra Padhye, “Datagram Congestion Control Protocol (DCCP),“ RFC 4340, March 2006.
[3] Sally Floyd, Eddie Kohler, “Profile for DCCP Congestion Control ID 2: TCP-like Congestion Control,” RFC 4341, March 2006.
[4] Eddie Kohler, Sally Floyd, and Jitendra Padhye, “Profile for DCCP Congestion Control ID 3: TFRC Congestion Control,” RFC 4342, March 2006.
[5] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A transport protocol for real-time applications,” RFC 3550, July 2003.
[6] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, H. Kimata, “RTP payload format for MPEG-4 audio/visual streams,” RFC3016, Nov. 2000.
[7] J. Rosenberg, H. Schulzrinne, “An RTP payload format for generic forward error correction,” RFC 2733, Dec. 1999.
[8] Adam Li, “RTP payload format for generic forward error correction,” Internet Draft draft-ietf-avt-ulp-18, IETF, June 2006. Work in progress.
[9] L. A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson and G. Fairhurst, The Lightweight User Datagram Protocol (UDP-Lite), RFC3828, July 2004.
[10] MPEG-4 Video Verification Model v18.0, Coding of Moving Pictures and Audio N3908, ISO/IEC JTC1/SC29/ Kikuchi WG11, Jan. 2001.
[11] Sally Floyd and Kevin Fall, “Promoting the Use of End-to-End Congestion Control in the Internet,” IEEE/ACM Transactions on networking, vol. 7, no. 4, Aug. 1999.
[12] J. Kim, Y.-G. Kim, H. Song, T.-Y. Kuo, Y. J. Chung, and C.-C. J. Kuo, “TCP-friendly Internet video streaming employing variable frame-rate encoding and interpolation,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 1164–1177, Oct. 2000.
[13] D. Wu, Y. T. Hou, W. Zhu, H.-J. Lee, T. Chiang, Y.-Q. Zhang, and H. J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923–941, Sept. 2000.
[14] Q. Zhang, W. Zhu, and Y-Q. Zhang, “Resource allocation for multimedia streaming over the Internet,” special issue on Multimedia over IP in IEEE Trans. on Multimedia, vol. 3, no.3, pp. 339-355, Sept. 2001.
[15] C. H. Shih, J. U. Wang, C. K. Shieh and W. S. Hwang, "An integrated rate control scheme for TCP-friendly MPEG-4 video transmission," Signal Processing: Image Communication (Elsevier), vol. 23, issue 2, pp. 101-115, Feb. 2008.
[16] Y.G. Kim, J. Kim, and C.C. J. Kuo, “TCP-friendly internet video with smooth and fast rate adaptation and network-aware error control,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 14, no. 2, Feb. 2004.
[17] D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Transporting real-time video over the Internet: challenges and approaches,” Proc. of the IEEE, vol. 88, pp. 1855–1875, Dec. 2000.
[18] Dapeng Wu, Yiwei Thomas Hou,Weneu, Ya-Qin Zhang and John M. Peha, “Streaming video over Internet: approaches and directions,” IEEE Trans. Circuits Syst. Video Technol., vol.11, no. 3, pp. 282-300, March 2001.
[19] F. Pan, Z. Li, K. Lim, and G. Feng, “A Study of MPEG-4 rate control scheme and its improvements,” IEEE Trans. Circuits Syst. Video Techno. , vol. 13, pp. 440-446, May 2003.
[20] J. Widmer, C. Boutremans and J.Y. Le Boudec, “End-to-end congestion control for TCP-Friendly flows with variable packet size,” ACM SIGCOMM Computer Communications Review, vol. 34, no. 2, pp. 137-151, Apr. 2004.
[21] Fan Yang, Qian Zhang, Wenwu Zhu, and Ya-Qin Zhang, “End-to-end TCP-friendly streaming protocol and bit allocation for scalable video over wireless Internet”, IEEE Journal on Selected Areas in Communications, vol. 22, no. 4, pp. 777-790, May 2004.
[22] Z. He, J. Cai, and C. W. Chen, "Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding," IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 6, pp. 511-523, 2002.
[23] Mario Baldi, Yoram Ofek, “End-to-end delay analysis of videoconferencing over packet-switched networks,” IEEE/ACM Transactions on Networking, vol. 8, issue 4, pp. 479 – 492, August 2000.
[24] Huahui Wu, Mark Claypool, and Robert Kinicki, “Adjusting forward error correction with temporal scaling for TCP-friendly streaming MPEG,” ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), vol. 1, no. 4, Nov. 2005.
[25] Yufei Yuan, Bruce F. Cockburn, Thomas Sikora and Mrinal Mand, “Efficient allocation of packet-level forward error correction in video streaming over the Internet,” Journal of Electronic Imaging, vol. 16, issue 2, April - June 2007.
[26] C. H. Shih, C. K. Shieh and W. S. Hwang, "A transparent loss recovery scheme using packet redirection for wireless video transmissions," EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 437128, 15 pages, 2008. doi:10.1155/2008/437128.
[27] Syed A. Khayam, Shirish Karande, Hayder Radha, Dmitri Loguinov, “Performance analysis and modeling of errors and losses over 802.11b LANs for high-bit-rate real-time multimedia,” Signal Processing: Image Communication, vol. 18, issue 7, pp.575-595, Aug. 2003.
[28] E. Modiano, “An adaptive algorithm for optimizing the packet size used in wireless ARQ protocols,” Wireless Networks, vol. 5, issue 4, pp. 279-286, 1999.
[29] S. Choudhury, J. D. Gibson, “Payload Length and Rate Adaptation for Multimedia Communications in Wireless LANs,” IEEE Journal on Selected Areas in Communications, vol .25, issue 4, pp. 796-807, May 2007.
[30] Avanish Tripathi and Mark Claypool, “Improving Multimedia Streaming with Content-Aware Video Scaling,” In Proceedings of the Second International Workshop on Intelligent Multimedia Computing and Networking (IMMCN), Durham, North Carolina, USA, March 8-12, 2002.
[31] H. J. Lee, T. Chiang, and Y. Q. Zhang, “Scalable rate control for MPEG-4 video,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 878–894, Sept. 2000.
[32] DCCP Socket Application Library. [Online]. Available: http://www.erg.abdn.ac.uk/users/gerrit/dccp/apps/dccplib.html
[33] I. McDonald, DCCP patches to Linux kernel 2.6.20. [Online]. Available: http://wand.net.nz/~iam4/dccp/patches20/
[34] Yufeng Shan, “Cross-layer techniques for adaptive video streaming over wireless networks,” EURASIP Journal on Applied Signal Processing, vol. 2005, issue 2, pp. 220-228.
[35] Yung-Chang Chiu, Ce-Kuen Shieh, Jing-Xin Wang, Alvin Wen-Yu Su and Tyng-Yeu Liang, “A real time MPEG-4 parallel encoder on software distributed shared memory systems,” in Springer-Verlag Lecture Notes in Computer Science, LNCS 3358, pp. 965-974, Dec, 2004.
[36] Borgonovo F., and Capone A., “Efficiency of error-control schemes for real-time wireless applications on the Gilbert channel,“ IEEE Transactions on Vehicular Technology, vol. 54, no. 1, pp. 246–258, Jan. 2005.
[37] V. Parthasarthy, J. W. Modestino and K. S. Vastola, "Reliable transmission of high- quality video over ATM networks," IEEE Trans. on Image Proc., vol. 8, pp. 68-84, March 1999.
[38] Yan Yang and Sheila S. Hemami, “Minimax frame rate control using a rate-distortion optimized wavelet coder,” In Proceedings of International Conference on Image Processing (ICIP), Kobe, Japan, October 24-28, 1999.
[39] Anthony Vetro, Huifang Sun and Yao Wang, “Rate-distortion optimized video coding considering frameskip,” In Proceedings of International Conference on Image Processing (ICIP), Thessaloniki, Greece, October 7-10, 2001.
[40] “ATHEROS Communications.” [Online]. Available: http://www.atheros.com/pt/index.html/
[41] “MADWIFI.” [Online]. Available: http://madwifi.org/
[42] Hwangjun Song and C.-C. Jay Kuo, “Rate control for low bit rate video via variable encoding frame rates,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 512-521, April 2001.
[43] Kang-Won Lee, R. Puri, Tae-eun Kim, K. Ramchandran, V. Bharghavan, “An integrated source coding and congestion control framework for video streaming in the Internet,” INFOCOM 2000, vol. 2, pp. 747-756, March 2000.
[44] M. Hamdi, J. W. Roberts, P. Rolin, “Rate control for VBR video coders in broad-band networks,” IEEE J. on Sel. Areas in Comm., vol. 15, pp. 1040-1051, Aug. 1997.
[45] F. Le Leannec, C. M. Guillemot, “Error resilient video transmission over the Internet,” in Proc. SPIE Visual Communications and Image Processing (VCIP’99), Jan. 1999.
[46] R. Talluri, “Error-resilient video coding in the ISO MPEG4 standard,” IEEE Communications Magazine, pp. 112-119, June 1998.
[47] The ICSI Center for Internet Research. [Online.] Available: http://www.icir.org/
[48] Vijay Arya, Thieery Turletti, “Accurate and explicit differentiation of wireless and congestion losses,” in Proc. of International Conference on Distributed Computing Systems Workshops(ICDCS), Providence, Rhode Island, USA, May 2003.
[49] Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, “Achieving moderate fairness for UDP flows by path-status classification,” in Proc. of IEEE Conf. on Local computer Networks (LCN), pp. 252-261, Tampa, FL, Nov. 2000.
[50] S. Biaz, and N. Vaidya, “Discriminating congestion losses from wireless losses using inter-arrival times at the receiver,” IEEE symposium on Application-Specific Systems and Software Engineer, pp. 10-17, Richardson, TX, Mar 1999.
[51] Song Cen, Pamela C. Cosman and Geoffrey M. Voelker, “End-to-end differentiation of congestion and wireless losses,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 703-717, Oct. 2003.
[52] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP Reno performance: a simple model and its empirical validation,” IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 133–45, Apr. 2000.
[53] L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” ACM SIGCOMM Computer Comm. Rev., vol. 27, no. 2, pp. 24-36, Apr. 1997.
[54] K. Park, W. Wang, “QoS-sensitive transport of real-time MPEG video using adaptive redundancy control,” Computer Communications, pp. 78-92, Sept. 2001.
[55] O. Ait-Hellal, E. Altman, A. Jean-Marie, I. Kurkova, “On loss probabilities in presence of redundant packets and several traffic sources,” Performance Evaluation 36, pp. 485-518, 1999.
[56] K. Park, W. Willinger, “Self-similar network traffic and performance evaluation,” Willy, 2000.
[57] Qian Zhang, Wenwu Zhu and Y. Q. Zhang, “End-to-end QoS for video delivery over wireless Internet,” Proceedings of the IEEE, vol. 93, no. 1, pp. 123-134, Jan. 2005.
[58] IEEE Standard, “Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications Amendment 8: medium access control (MAC) quality of Service enhancements,” pp.1–189, 2005.
[59] Steven Gringeri, Roman Egorov, Khaled Shuaib, Arianne Lewis and Bert Basch, “Robust compression and transmission of MPEG-4 video,” in Proceedings of the seventh ACM international conference on Multimedia, pp. 113-120, Orlando, Florida, June 1999.
[60] K. K. Ramakrishnan, S. Floyd, and D. Black. “The addition of explicit congestion notification (ECN) to IP,” RFC 3168, Sept. 2001
[61] T. Chiang, “A rate control scheme using a new rate-distortion model,” JCoding of Moving Pictures and Associated Audio MPEG95/0436 TC1/SC29/WG11, Dallas, TX, Nov. 1995.
[62] T. Chiang and Y.-Q. Zhang, “A new rate control scheme using quadratic rate distortion model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 246–250, Feb. 1997.
[63] A. Vetro, H. Sun, and Y. Wang, “MPEG-4 rate control for multiple video objects,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 186–199, Feb. 1999.
[64] T. Turletti and C. Huitema, “RTP payload format for H.261 video streams,” RFC2032, Oct. 1996.
[65] ITU-T, Recommendation H.263 Version 2-Video coding for low bitrate communication, Jan. 1998.
[66] Draft ITU-T recommendation and final draft international standard of joint video specification, ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC, in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050, 2003.
[67] Z. G. Li, C. Zhu, N. Ling, X. K. Yang, G. N. Feng, S. Wu, and F. Pan, “A unified architecture for real-time video-coding systems,” IEEE Trans. Circuits Syst. Video Technol., vol 13, pp.472-487, Jun. 2003.
[68] C. Zhu, “RTP payload format for H.263 video streams,” RFC2190, Sep. 1997.
[69] C. Bormann, L. Cline, G. Deisher, T. Gardos, C. Maciocco, D. Newell, J. Ott. G. Sullivan, S. Wenger and C. Zhu, “RTP payload format for the 1998 version of ITU-T Rec. H.263 video (H.263+),” RFC2429, Oct. 1998.
[70] D. Hoffman, G. Fernando and V. Goyal, “RTP payload format for MPEG1/MPEG2 video,” RFC2038, Oct. 1996.
[71] Arne Lie and Jirka Klaue, “Evalvid-RA: Trace driven simulation of rate adaptive MPEG-4 VBR video,” ACM/Springer Multimedia Systems Journal, vol. 14, no.1, June 2008.
[72] H. Song and C.-C. J. Kuo, “Rate control for low-bit rate video via variable-encoding frame rates,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4 pp.512-521, April 2001.