簡易檢索 / 詳目顯示

研究生: 黃智暐
Huang, Chih-Wei
論文名稱: 超高性能纖維混凝土梁構件之鋼筋搭接長度研究
Splice Length of Steel Reinforcing Bars in Ultra high performance fiber reinforced concrete beams
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 210
中文關鍵詞: 鋼筋握裹行為鋼筋混凝土梁超高性能纖維混凝土鋼筋直線握裹公式鋼纖維
外文關鍵詞: bond behavior, Ultra-High Performance Fiber Reinforce Concrete (UHPFRC), bond strength, splice length
相關次數: 點閱:187下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超高性能纖維混凝土(UHPFRC)為一種擁有優良性能之混凝土複合材料,其抗壓強度可大於150 MPa,抗拉強度可提升至10 MPa以上。高強度混凝土帶來的脆性行為也在添加了纖維後得到改善,具有應變硬化、多重開裂等重要特性,並且能有效增加混凝土開裂之後的延性行為。
    本研究為探討超高性能纖維混凝土梁構件之鋼筋搭接長度,設計並製作16支超高性能纖維混凝土(UHPFRC)與超高性能混凝土(UHPC)梁試體,研究參數包含:1)鋼纖維之添加、2)鋼筋搭接長度、3)有無粗粒料,以及4)握裹鋼筋尺寸,透過四點載重實驗觀察其加載後之鋼筋握裹行為。實驗結果顯示,加入1.5%纖維體積比之鋼纖維能有效提升鋼筋平均握裹應力,且鋼纖維在本次實驗中為影響鋼筋平均握裹應力之最主要因素。添加纖維除了能使握裹劈裂破壞模式變得更具延展性,在試體開裂後也持續提供強度,使得試體在破壞之前提供了充足的預警性。
    根據試驗之分析結果,證實在使用超高性能纖維混凝土(UHPFRC)與超高性能混凝土(UHPC)的情況下,確實能有效縮短鋼筋之伸展與搭接長度需求。此外,當混凝土強度不受70 MPa之上限約束時,採用ACI 318-19規範之鋼筋直線受拉伸展長度計算式進行設計亦可滿足鋼筋之伸展與搭接長度需求,且根據本研究採用之混凝土抗壓強度,其混凝土計算強度能適當放寬至100 MPa以上。

    Due to the lack of test data on the bond strength of deformed reinforcing bars embedded in Ultra-high performance fiber reinforced concrete (UHPFRC), ACI-318-19 building code requirements imposed an upper limit of 70 MPa on compressive strength of concrete that may be used in calculating tension development length and tension splice length.
    To evaluate the applicability of ACI-318-19 design provisions for calculating splice length of UHPFRC, sixteen simply supported beam specimens were fabricated and tested in this experimental program. Each beam was designed with two deformed bars spliced in a constant moment region on the tension side at mid-span. The test parameters include: 1) inclusion of the steel fiber, 2) splice length, 3) with and without coarse aggregate, and 4) bar size.
    Experimental results indicated that inclusion of a 1.5% volume ratio of fibers increased the bond strength between UHPFRC and reinforcing bars. Additionally, the splitting bond failure of beams with fibers were more ductile and allowed propagation of the flexural cracks extended upward to the top surface. The tesr results also show that UHPFRC beams could significantly reduced the required splice length based on ACI-318-19 design provisions, and the upper limitations of concrete strengths can be adjusted to over 100 MPa.

    目錄 摘要 I 誌謝 VII 目錄 VIII 表目錄 XVI 圖目錄 XIX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 3 2.1 高性能纖維混凝土 3 2.2 超高性能纖維混凝土 4 2.3 鋼筋與混凝土間之握裹機制 5 2.3.1 握裹力作用行為 7 2.3.2 握裹破壞模式 11 2.3.2.1 拉拔式破壞(Pullout failure) 11 2.3.2.2 劈裂破壞(Splitting failure) 12 2.3.3 超高性能纖維混凝土之握裹特性 12 2.4 影響握裹力之因子 15 2.4.1 鋼筋配置 15 2.4.1.1 混凝土之保護層厚度與縱向鋼筋間距 15 2.4.1.2 鋼筋之伸展與搭接長度 16 2.4.1.3 橫向鋼筋之配置 17 2.4.2 混凝土性質 18 2.4.2.1 混凝土之抗壓與抗拉強度 18 2.4.2.2 鋼纖維之使用 21 2.4.2.3 混凝土之粒料強度與數量 22 2.4.3 鋼筋性質 23 2.4.3.1 握裹鋼筋尺寸 23 2.4.3.2 鋼筋表面之幾何性質 24 2.4.3.3 鋼筋應力與降伏強度 26 2.5 鋼筋直線握裹模型之介紹 27 2.5.1 ACI 318-63, 71, 89 (1963, 1971, 1989) [37, 38, 39] 28 2.5.2 OJB Model (1977) [17] 28 2.5.3 CEB-FIP (2010) [46] 29 2.5.4 Darwin et.al (1992) [21] 31 2.5.5 Darwin et.al (1996) [36] 32 2.5.6 Zuo and Darwin (1998, 2000) [24, 25] 33 2.5.7 Esfahani and Rangan (1998) [22, 23] 34 2.5.8 ACI 408R -03 (2003) [8] 35 2.5.9 AIJ-2010規範 (2010) [41] 36 2.5.10 ACI 318-19 (2019) [61] 37 2.5.11 材料強度於各鋼筋握裹模型之計算上限 40 第三章 試驗規劃與方法 43 3.1 試體材料 43 3.1.1 超高性能纖維混凝土 43 3.1.2 鋼筋 51 3.1.3 其他輔助工具 53 3.2 試體規劃 54 3.3 實驗與試體設計 55 3.3.1 試體尺寸 57 3.3.2 斷面設置 57 3.3.2.1 需求強度計算 57 3.3.2.2 斷面鋼筋設置 61 3.3.3 試驗配比 64 3.4 試驗程序 64 3.4.1 力量加載設備 65 3.4.1.1 500噸萬能試驗機 65 3.4.1.2 100噸動態萬能試驗機 65 3.4.1.3 100噸萬能試驗機 66 3.4.2 量測系統 67 3.4.2.1 位移計(Displacement Transducer): 67 3.4.2.2 資料擷取系統(Data Logger): 68 3.4.2.3 電阻式應變計 69 3.4.2.4 表面變形測量(NDI Optotrak ® Certus HD) 70 3.4.3 混凝土拌合 72 3.5 試體製作 72 3.5.1 應變計黏貼作業 72 3.5.2 應變計位置 75 3.5.3 梁試體綁紮 76 3.5.4 梁試體灌漿 78 3.5.4.1 事前準備工作 78 3.5.4.2 混凝土拌合 79 3.5.4.3 混凝土澆置 80 3.5.5 拆模與養護 81 3.6 試驗流程 82 3.6.1 試體架設 82 3.6.2 量測系統架設 83 3.6.3 進行加載與影像記錄 84 3.7 材料試驗 85 3.7.1 圓柱抗壓試驗 85 3.7.2 狗骨頭抗拉試驗 85 3.7.3 鋼筋拉力試驗 86 第四章 試驗結果 87 4.1 材料試驗 87 4.1.1 混凝土抗壓強度 87 4.1.2 混凝土抗拉強度 94 4.1.3 鋼筋拉力強度 100 4.2 實驗數據之整理 102 4.2.1 載重與梁中點撓度 102 4.2.2 鋼筋應變 102 4.2.3 鋼筋之平均握裹應力 102 4.2.4 鋼筋應力之計算 103 4.2.4.1 斷面彎矩-曲率分析(Moment-curvature method) 103 4.2.4.2 ACI 318-19公式預測之鋼筋應力 107 4.2.4.3 應變計量測值 107 4.3 梁試驗結果 109 4.3.1 # 6 (D19)握裹鋼筋試體(含粗粒料) 109 4.3.1.1 B6-F0-300-Y 109 4.3.1.2 B6-F0-200-Y 113 4.3.1.3 B6-F0-100-Y 116 4.3.1.4 B6-F150-300-Y 119 4.3.1.5 B6-F150-200-Y 122 4.3.1.6 B6-F150-100-Y 126 4.3.2 # 11(D36)握裹鋼筋試體(含粗粒料) 129 4.3.2.1 B11-F0-650-Y 129 4.3.2.2 B11-F0-530-Y 132 4.3.2.3 B11-F0-430-Y 136 4.3.2.4 B11-F150-650-Y 139 4.3.2.5 B11-F150-530-Y 142 4.3.2.6 B11-F150-430-Y 146 4.3.3 # 11(D36)握裹鋼筋試體(不含粗粒料) 149 4.3.3.1 B11-F0-530-N 149 4.3.3.2 B11-F0-430-N 153 4.3.3.3 B11-F150-530-N 156 4.3.3.4 B11-F150-430-N 159 4.3.4 梁試驗結果總表 163 第五章 試驗結果討論 164 5.1 破壞模式 164 5.2 梁之撓曲行為 169 5.2.1 梁之載重-位移關係曲線 169 5.2.2 梁之最大撓曲強度 172 5.3 鋼筋之最大平均握裹應力 176 5.3.1 鋼纖維對於握裹應力之貢獻 179 5.3.2 粗粒料對於握裹應力之貢獻 182 5.3.3 鋼筋搭接長度對於握裹應力之貢獻 183 5.4 實驗結果與其他鋼筋直線握裹模型公式之比較 185 5.5鋼筋直線握裹模型之探討 189 5.6鋼筋直線受拉搭接長度 192 第六章 結論與建議 196 6.1 結論 196 6.2 建議 199 參考文獻 200 附錄A. 實驗結果與其他研究之握裹應力比較 208

    參考文獻
    [1] Hung, C. C., & El-Tawil, S. (2010). “Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites,” ACI Materials Journal,
    [2] Hung, C. C., & El-Tawil, S. (2011). “Seismic behavior of a coupled wall system with HPFRC materials in critical regions,” Journal of Structural Engineering, 137(12), 1499-1507.
    [3] Hung, C. C., Su, Y. F., & Yu, K. H. (2013). “Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites,” Construction and Building Materials, 41, 37-48.
    [4] Hung, C. C., & Li, S. H. (2013). “Three-dimensional model for analysis of high performance fiber reinforced cement-based composites,” Composites Part B: Engineering, 45(1), 1441-1447.
    [5] 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
    [6] Hung, C. C., & Su, Y. F. (2016). “Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations,” Construction and Building Materials, 118, 194-203.
    [7] Koo, I. Y., & Hong, S. G. (2016). “Strengthening RC Columns with Ultra High Performance Concrete,” The 2016 Structures Congress (Structures 16)
    [8] ACI Committee 408 (2003) “Bond and Development of Straight Reinforcing Bars in Tension,”American Concrete Institute (ACI), Farmington Hills, Mich.
    [9] ACI Committee 318 (1971) “Building Code Requirements for Reinforced Concrete (ACI 318-71),” American Concrete Institute, Farmington Hills, Mich., 78 pp.
    [10] Nilson, A. H., Darwin, D., & Dolan, C. W.(2004). “Design of Concrete Structures,” 13th Edition, McGraw-Hill, New York, 779 pp.
    [11] Azizinamini, A., Stark M., Roller, J.J. ,& Ghosh, S. K. (1993) “Bond Performance of Reinforcing Bars Embedded in High-strength Concrete,” ACI Structural Journal, V. 90, No.5.
    [12] Marchand, P. (2015) “Bond behaviour of reinforcing bars in UHPFRC,” Materials and Structures DOI 10.1617/s11527-015-0628-0.
    [13] Yoo, D. Y., Shin, H. O, Yang, J. M , & Yoon, Y. S. (2013) “Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers,” Composites Part B: Engineering Volume 58, Pages 122-133
    [14] CEB-FIP (1990) “Model Code for Concrete Structures,”Comité Euro-International du Béton, c/o Thomas Telford, London.
    [15] Darwin, D., Zuo, J., Tholen, M. L., & Idun, E. K. (1996b) “Development Length Criteria for Conventional and High Relative Rib Area Reinforcing Bars,”ACI Structural Journal, V. 93,No. 3, May-June, pp. 347-359.
    [16] Tepfers, R. (1973) “A Theory of Bond Applied to Overlapping Tensile Reinforcement Splices for Deformed Bars,” Publication 73:2, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 328 pp.
    [17] Orangun, C. O., Jirsa, J. O., & Breen, J. E. (1975) “The Strength of Anchored Bars: A Reevaluation of Test Data on Development Length and Splices,” Research Report No. 154-3F, Center for Highway Research, The University of Texas at Austin, Tex., Jan., 78 pp.
    [18] Darwin, D., & Graham, E. K. (1993a) “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” ACI Structural Journal, V. 90, No. 6, Nov.-Dec., pp. 646-657.
    [19] Darwin, D., & Graham, E. K. (1993b) “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” SL Report 93-1, University of Kansas Center for Research, Lawrence, Kans., Jan., 68 pp.
    [20] Ahmed H, A. K., Hala, A., & Omia S, E. H (2013) “Effect of Transverse Reinforcement on the Behavior of Tension Lap Splice in High-Strength Reinforced Concrete Beams,” World Academy of Science, Engineering and Technology International Journal of Bioengineering and Life Sciences Vol:7, No:12
    [21] Darwin, D. , McCabe, S. L. , Idun, E. K., & Schoenekase, S. P. (1992) “Development Length Criteria: Bars Not Confined by Transverse Reinforcement,” ACI Structural Journal, V. 89, No. 6, Nov.-Dec., pp. 709-720.
    [22] Esfahani, M. R., & Vijaya Rangan, B. V. (1998a) “Local Bond Strength of Reinforcing Bars in Normal Strength and High-Strength Concrete (HSC),” ACI Structural Journal, V. 95, No. 2, Mar.-Apr., pp. 96-106.
    [23] Esfahani, M. R., & Vijaya Rangan, B. V. (1998b) “Bond between Normal Strength and High-Strength Concrete (HSC) and Reinforcing Bars in Splices in Beams,” ACI Structural Journal, V. 95, No. 3, May-June, pp. 272-280.
    [24] Zuo, J., & Darwin, D. (1998) “Bond Strength of High Relative Rib Area Reinforcing Bars,” SM Report No. 46, University of Kansas Center for Research, Lawrence, Kans., 350 pp.
    [25] Zuo, J., & Darwin, D. (2000) “Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete,” ACI Structural Journal, V. 97, No. 4, July-Aug., pp. 630-641.
    [26] Ezeldin, A. S., & Balaguru, P. N. (1989) “Bond Behavior of Normal and High-Strength Fiber Concrete,” ACI Materials Journal, V. 86, No. 5, Sept.-Oct., pp. 515-524.
    [27] Alkaysi, M., & Sherif, E. T. (2016) “Bond between Ultra-High Performance Concrete and Steel Bars,” First International Interactive Symposium on UHPC.
    [28] Lee, J. K. (2014) “Bonding Behavior of Lap-spliced Reinforcing Bars Embedded in Ultra-High Strength Concrete with Steel Fibers,” KSCE Journal of Civil Engineering (2016) 20(1):273-281.
    [29] Abrams, D. A. (1913) “Tests of Bond between Concrete and Steel,” Bulletin No. 71, Engineering Experiment Station, University of Illinois, Urbana, Ill., 105 pp.
    [30] Clark, A. P. (1946) “Comparative Bond Efficiency of Deformed Concrete Reinforcing Bars,”ACI Journal, Proceedings V. 43, No. 4, Dec., pp. 381-400.
    [31] Clark, A. P. (1950) “Bond of Concrete Reinforcing Bars,”ACI Journal, Proceedings V. 46, No.3, Nov., pp. 161-184.
    [32] ASTM A 305T (1947) “Tentative Specifications for Minimum Requirements for Deformations of Deformed Steel Bars for Concrete Reinforcement, A 305-47T,”ASTM International, West Conshohocken, Pa.
    [33] ASTM A 305 (1949) “Specifications for Minimum Requirements for Deformations of Deformed Steel Bars for Concrete Reinforcement, A 305-49,”ASTM International, West Conshohocken, Pa.
    [34] Soretz, S., & Holzenbein, H. (1979) “Influence of Rib Dimensions of Reinforcing Bars on Bond and Bendability,”ACI Journal, Proceedings V. 76, No. 1, Jan., pp. 111-127.
    [35] Tan, C., Darwin, D., Tholen, M. L., & Zuo, J. (1996) “Splice Strength of Epoxy-Coated High Relative Rib Area Bars,” SL Report 96-2, University of Kansas Center for Research, Lawrence, Kans., May, 69 pp.
    [36] Darwin, D., Tholen, M. L., Idun, E. K., & Zuo, J. (1996a) “Splice Strength of High Relative Rib Area Reinforcing Bars,” ACI Structural Journal, V. 93, No. 1, Jan.-Feb., pp. 95-107.
    [37] ACI Committee 318 (1963) “Building Code Requirements for Reinforced Concrete (ACI 318-63),” American Concrete Institute, Farmington Hills, Mich., 144 pp.
    [38] ACI Committee 318 (1971) “Building Code Requirements for Reinforced Concrete (ACI 318-71),” American Concrete Institute, Farmington Hills, Mich., 78 pp.
    [39] ACI Committee 318 (1989) “Building Code Requirements for Reinforced Concrete (ACI 318-89),” American Concrete Institute, Farmington Hills, Mich., 144 pp.
    [40] ACI Committee 318 (1995) “Building Code Requirements for Reinforced Concrete (ACI 318-95) and Commentary (318R-95),” American Concrete Institute, Farmington Hills, Mich., 369 pp.
    [41] AIJ 2010 (2010) “Standard for Structural Calculation of Reinforced Concrete Structures,” Architectural Institute of Japan, Tokyo.
    [42] ACI Committee 318 (2014) “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute (ACI), Farmington Hills, Mich.
    [43] Henager C. H. & Doherty T. J. (1976) “Analysis of Reinforced Fibrous Concrete Beams,” Proceeding, ASCE. 102(1): 177-188.
    [44] Sharma, A. K. (1986) “Shear strength of steel fiber reinforced concrete beams,” In Journal Proceedings (Vol. 83, No. 4, pp. 624-628).
    [45] Thompson, M. K., Jirsa, J. O., Breen, J. E., & Klingner, R. E. (2002) “Anchorage Behavior of Headed Reinforcement: Literature Review,” FHWA/TX-0-1855-1
    [46] CEB-FIP (2010) “Model Code for Concrete Structures,”Comité Euro-International du Béton, c/o Thomas Telford, London.
    [47] Hamad, B. S., Harajli, M. H., & Jumaa, G. (2001). Effect of fiber reinforcement on bond strength of tension lap splices in high-strength concrete. ACI Structural Journal, 98(5), 638-647.
    [48] Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
    [49] Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
    [50] Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
    [51] Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.107(6).
    [52] Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
    [53] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    [54] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    [55] Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
    [56] Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
    [57] Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
    [58] Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
    [59] Hung, C. C., Li, H.-S., Chen, N.-Y. (2019) Tension-Stiffening Effect in Steel-Reinforced UHPC Composites: Constitutive Model and Effects of Steel Fibers, Loading Patterns, and Rebar Sizes. Composites Part B: Engineering, 158, pp. 269-278.
    [60] 紀凱甯. (2017) . 高強度螺紋節鋼筋於鋼筋混凝土之握裹行為研究,國立台灣科技大學營建工程學系博士論文
    [61] ACI Committee 318 (2019) “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute (ACI), Farmington Hills, Mich.
    [62] Turk, K., & Yildirim, M. S. (2003). Bond strength of reinforcement in splices in beams. Structural Engineering and Mechanics, 16(4), 469-478.
    [63] Graybeal, B. A. (2007). Compressive behavior of ultra-high-performance fiber-reinforced concrete. ACI materials journal, 104(2), 146.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE