簡易檢索 / 詳目顯示

研究生: 李榮盛
Li, Rung-Sheng
論文名稱: NdAlO3陶瓷介電特性改善及微波元件之應用
Improved Dielectric Properties of NdAlO3 Ceramics and Application of Microwave Devices
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 微波陶瓷介電
外文關鍵詞: ceramic, dielectric, microwave
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文中將討論(x)NdAlO3-(1-x)SrTiO3系統及NdAlO3摻雜(x)wt%ZnO燒結促進劑之微波介電特性及微結構。由實驗發現,(x)NdAlO3-(1-x)SrTiO3系統調整適合的x值,可以使其頻率溫度漂移係數降至趨近於零,除此之外,燒結溫度也較NdAlO3為低;適量的燒結促進劑ZnO,亦能有效的降低NdAlO3的燒結溫度。

      在本論文裡,利用雙模三角共振器設計了一個中心頻率在4GHz帶通濾波器,並分別使用了FR4,Al2O3,及NdAlO3+0.5wt%ZnO當作基板,更利用電腦模擬與實作的結果作比較。

     The microwave dielectric properties and the microstructures of the(x)NdAlO3-(1-x)SrTiO3 system and NdAlO3 +(x)wt%ZnO have been discussed in this paper. The results show that appropriately adjusting the x value ,zero τf value can be obtained in the (x)NdAlO3-(1-x)SrTiO3 system,and the sintering temperature would be lower than pure NdAlO3 ceramics.Adding sintering aids ZnO can also lower the sintering temperature of NdAlO3.

     A bandpass filter of center frequency at 4GHz have been designed in this paper,and based on dual-mode triangular resonators, with FR4、Al2O3、and NdAlO3+0.5wt%ZnO substrates. And we compared the result of the simulation with the result of the measurement of the performance.

    內文目錄 第一章 緒論..................1 第二章 介電及材料原理.............3 2-1 介電原理................. 3 2-2 介電共振器原理.............. 8 2-3 燒結理論................. 9 2-4 液相燒結.................10 第三章 微波電路及濾波器理論......... 12 3-1 微波電路起源...............12 3-2 微帶線原理................12 3-3 微帶線組抗及計算公式...........13 3-4 微帶線的功率損耗.............16 3-5 集膚效應的影響..............18 3-6 濾波器通論................18 3-7 共振器耦合的概念.............19 3-8  Dual-Mode三角共振濾波器.........20 3-8-1 二階Dual-Mode三角共振濾波器模型.... 23 3-8-2 二階Dual-Mode三角共振濾波器模型.... 24 第四章 實驗製程與元件量測.......... 25 4-1 材料的製備................25 4-2 基板的選擇................26 4-3 介電材料之特性分析與量測方法.......26 4-3-1 密度的量測...............26 4-3-2 X-Ray分析(XRD)............26 4-3-3 掃描式電子顯微鏡分析(SEM)...... 27 4-3-4 微波特性的量測.............27 4-4 濾波器的製作...............32 4-4-1 濾波器的規格..............32 4-4-2 Al2O3與NdAlO3+0.5wt%ZnO基板之實作... 32 4-4-3 FR4基板的實作............. 33 4-5 濾波器的特性量測.............33 第五章 實驗結果與討論............ 34 5-1 (1-x)SrTiO3+(x)NdAlO3陶瓷之微波介電特性分析..................... 34 5-1-1 介電常數分析..............34 5-1-2 密度分析................35 5-1-3 Q*f值分析............... 36 5-1-4 溫度頻率漂移係數(τf)分析.......36 5-1-5 XRD繞射分析.............. 37 5-1-6 SEM分析................ 38 5-2 NdAlO3摻雜0.25wt%、0.5wt%及1wt%ZnO之微波介電特性分析................... 38 5-2-1 介電常數分析..............38 5-2-2 密度分析................39 5-2-3 Q*f值分析............... 39 5-2-4 溫度頻率漂移係數(τf)分析.......40 5-2-5 XRD繞射分析.............. 41 5-2-6 SEM分析................ 41 5-3 濾波器的響應...............42 5-3-1 FR4基板................ 42 5-3-2 Al2O3基板............... 42 5-3-3 NdAlO3+0.5wt%ZnO基板..........43 第六章 結論................. 45 參考文獻................... 47 圖目錄 圖2-1 極化結構圖...............51 圖2-2 極化頻率分佈圖.............52 圖2-3 電磁波入射介電陶瓷關係圖........53 圖2-4 電磁波發生全反射之路徑.........53 圖2-5 (a)圓柱型DR之TE01δ mode電場分佈圖 (b)圓柱型DR之TE01δ mode磁場分佈圖.......... 54 圖2-5 (c)圓柱型DR之TM01δ mode電場分佈圖 (d)圓柱型DR之TM01δ mode磁場分佈 圖......... 55 圖2-5 (e)圓柱型DR之HEM11δ mode電場分佈圖 (f)圓柱型DR之HEM11δ mode磁場分佈圖..........56 圖2-5 (g)圓柱型DR之HEM11δ mode電場分佈圖(ψ=0) (h)圓柱型DR之HEM11δ mode磁場分佈圖(ψ=π/2)...57 圖2-6 不同共振模式下,傳輸總功率分佈在空氣中與分佈在介電共振器內之功率比........... 58 圖3-1 (a)微帶線之外觀圖 (b)微帶線之電場與磁場分佈圖..................... 59 圖3-2 微帶線Quais TEM模態電磁場分佈圖.... 60 圖3-3 三種濾波器的低通原型圖 (a) Butterworth 濾波器 b) Chebyshev 濾波器(c) Elliptic Function濾波器...................... 61 圖3-4 (a)Dual-Mode Circular Ring Resonator(b)Dual -Mode Meander Loop Resonator(c)Dual-Mode Circular Disk Resonator(d)Dual-Mode Square Patch Resonator................62 圖3-5 The Characteristics of mode splitting (Meander Loop)............... 63 圖3-6 (a)三角共振器原型(b)三角共振器座標轉變圖...................... 64 圖3-7 三角共振器mode1及mode2的電場分佈圖...65 圖3-8 三角共振器mode1及mode2的電流分佈圖...65 圖3-9 二階三角濾波器.............66 圖3-10 N-poles三角共振濾波器等效電路模型...66 圖3-11 三角共振器split-mode frequencies與self-resonant frequencies模擬圖.......... 67 圖3-12 2-poles 三角共振濾波器等效電路圖... 68 圖3-13 4-poles 三角共振濾波器等效電路圖... 68 圖4-1 實驗流程圖...............69 圖4-2 煆燒昇溫曲線圖.............70 圖4-3 去黏劑及燒結昇溫曲線圖.........70 圖4-4 Courtney hold基本架構......... 71 圖4-5 量測用模具組..............71 圖4-6 介電共振器量測儀器圖..........72 圖4-7 介電常數及品質因素測量系統圖......72 圖4-8 濾波器之電路佈局............73 圖4-9 Al2O3基板濾波器實做圖......... 73 圖4-10 NdAlO3+0.25wt%ZnO基板濾波器實做圖...74 圖4-11 FR4基板濾波器實作圖..........74 圖5-1 (x)NdAlO3+(1-x)SrTiO3不同比例之介電常數與燒結溫度關係圖................ 75 圖5-2 (x)NdAlO3+(1-x)SrTiO3不同比例之密度與燒結溫度關係圖.................. 76 圖5-3 (x)NdAlO3+(1-x)SrTiO3不同比例之Q*f值與燒結溫度關係圖.................. 77 圖5-4 (x)NdAlO3+(1-x)SrTiO3不同比例之τf值與燒結溫度關係圖.................. 78 圖5-5 0.7NdAlO3 – 0.3SrTiO3在不同溫度的XRD繞射圖...................... 79 圖5-6 0.6NdAlO3 – 0.4SrTiO3在不同溫度的XRD繞射圖...................... 79 圖5-7 0.5NdAlO3 – 0.5SrTiO3在不同溫度的XRD繞射圖...................... 80 圖5-8 0.45NdAlO3 – 0.55SrTiO3在不同溫度的XRD繞射圖..................... 80 圖5-9 0.4NdAlO3 – 0.6SrTiO3在不同溫度的XRD繞射圖...................... 81 圖5-10 (x)NdAlO3 - (1-x)SrTiO3在1520℃下各比例之XRD圖.....................81 圖5-11 0.7NdAlO3 – 0.3SrTiO3在不同溫度下的SEM圖...................... 82 圖5-12 0.6NdAlO3 – 0.4SrTiO3在不同溫度下的SEM圖...................... 83 圖5-13 0.5NdAlO3 – 0.5SrTiO3在不同溫度下的SEM圖...................... 84 圖5-14 0.45NdAlO3 – 0.55SrTiO3在不同溫度下的SEM圖...................... 85 圖5-15 0.4NdAlO3 – 0.6SrTiO3在不同溫度下的SEM圖...................... 86 圖5-16 NdAlO3摻雜0.25wt%,0.5wt%,1wt%ZnO之介電係數與不同燒結溫度之關係........... 87 圖5-17 NdAlO3摻雜0.25wt%,0.5wt%,1wt%ZnO之密度與不同燒結溫度之關係圖............ 88 圖5-18 NdAlO3摻雜0.25wt%,0.5wt%,1wt%ZnO之Q*f值與不同燒結溫度之關係圖............ 89 圖5-19 NdAlO3摻雜0.25wt%,0.5wt%,1wt%ZnO之頻率溫度漂移係數與不同燒結溫度之關係圖...... 90 圖5-20 NdAlO3+0.25wt%ZnO在不同溫度的XRD繞射圖 91 圖5-21 NdAlO3+0.5wt%ZnO在不同溫度的XRD繞射圖.91 圖5-22 NdAlO3+1wt%ZnO在不同溫度的XRD繞射圖..92 圖5-23 NdAlO3+0.25wt%ZnO在不同溫度的SEM圖.. 93 圖5-24 NdAlO3+0.5wt%ZnO在不同溫度的SEM圖...94 圖5-25 NdAlO3+1wt%ZnO在不同溫度的SEM圖....95 圖5-26 IE3D模擬之FR4基板頻率響應圖......96 圖5-27 FR4基板實際量測圖...........97 圖5-28 IE3D模擬之Al2O3基板頻率響應圖.....98 圖5-29 Al2O3基板實際量測圖..........99 圖5-28 IE3D模擬之自製基板頻率響應圖.....100 圖5-31 自製基板實際量測圖..........101

    Reference

    [1] T. Nishikawa, "RF Front End Circuit Components Miniaturized Using Dielectric Resonators for Cellular Portable Telephones," IEICE Trans., 22, 74, 1991.
    [2] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures, MA:Artech House, Norwood, 1975.
    [3] T. Kakada, S. F. Wang, S. T. Syoshikawa, S. J. Jang, and R. E. Newnham, "Effect of Glass Additions on BaO TiO2 WO3 Microwave Ceramics, " J. Am. Ceram. Soc., 77, 1909, 1994.
    [4] T. Kakada, S. F. Wang, S. T. Syoshikawa, S. J. Jang, and R. E. Newnham, "Effects of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications, " J. Am. Ceram. Soc.,77, 2485, 1994.
    [5] S. I. Hirno, T. Hayashi, and A. Hattori, "Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics, " J. Am. Ceram. Soc., 74, 1320, 1991.
    [6] V. Tolmer, and G. Desqardin, "Low-Temperature Sintering and Influence of the Process on the Dielectric Properties of Ba(Zn1/3Ta2/3)O3, " J. Am, Ceram. Soc., 80, 1981, 1997.
    [7] H. Ouchi, and S. Kawashima, "A Direct Search Method for Determining Spin Hamiltonian Parameters", Jpn. J. Appl. Phys., 24, 60, 1985.
    [8] D. M. Pozar, Microwave Engineering, Addison-Wesley, New York, 1998.
    [9] D. Kajfez, "Computed Model Field Distribution for Isolated Dielectric Resonators, " IEEE. Trans. MTT, 32, 1609, 1984.
    [10] D. Kajfez, "Basic Principles Give Understanding of Dielectric Wave-guides and Resonators," Microwave System News, 13, 152, 1983.
    [11] D. Kajfez, and P. Guillon, Drelectric Resonators, Artech House, Dedham, 1989.
    [12] W. J. Huppmann, and G.Petzow, Progress in Liquid Phase Sintering, Verlag Schmid GmbH, Freiburg, 1979.
    [13] W. D. Kingery, "Densification During Sintering in Presence of a Liquid Phase, " J. Appl. Phys., 3, 301, 1959.
    [14] F. V. Lenel, "Sintering in Presence of a Liquid Phase," Trans. Am. Inst. Mining Met. Engrs., 175, 878, 1948.
    [15] V. N. Eremenko, Y. V. Naidich, and I. A. Lavrinenko, Liquid Phase Sintering, Consultants Bureau, New York, 1970.
    [16] R. Raj, and C. K. Chyung, "Solution Reprecipitation Creep in Glass Ceramics, " Acta Metal, 28, 159, 1980.
    [17] G. C. Kuczynski, Sintering process, Plenum Press, New York, 1980.
    [18] W. J. Huppmann, and G. Petzow, "The Role of Grain and Phase Boundaries in Liquid Phase Sintering," Ber. Bunnsenges Phys., 82, 308, 1978.
    [19] R. M. German, "Liquid Phase Sintering," Plenum Press, New York, 1985.
    [20] J. E. Marion, " Liquid-Phase Sintering of Ceramics, " J. Am. Ceram. Soc., 10, 708, 1987.
    [21] R. B. Heady, and J . W. Cahn, " An Analysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles," Metall. Trans., 1, 185, 1970.
    [22] R. B. Heady, and J. W. Cahn, "Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles," J. Am. Ceram. Soc., 7, 406, 1970.
    [23]言華,微波固態電路,北京理工大學出版社,北京,1995.
    [24]顧其諍、項家楨、袁孝康,微波積體電路設計,人民郵電出版社,北京,1978.
    [25] L. A. Trinogga, G. Kaizhou, and I. C. Hunter, Practical Microstrip Circuit Design, Ellis Horwood, New York, 1991.
    [26] R. E. Collin, "Foundations for Microwave Engineering,”McGraw-Hill, New York, 1992.
    [27] J. S. Hong, and M. J. Lancaster, "Couplings of Microstrip Square Open -Loop Resonators for Cross -Coupled Planar Microwave Filters," IEEE Trans. on MTT, 44, 2099, 1996.
    [28] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip Lines and Slotlines, Artech House, Boston, 1996.
    [29] E. O. Hammerstard, "Proceedings of the European Microwave Conference," 268, 1975.
    [30] E. J. Denlinger, "Losses of microstrip lines," IEEE Trans., 28, 513, 1980.
    [31] R. A. Pucel, D. J. Masse, and C. E Hartwig "Losses in microstrip," IEEE Trans., 16, 342, 1968.
    [32] R. L. Geiger, P. E. Allen, and N. R. Strader, "VLSI Design Techniques for
    Analog and Digital Circuits," McGraw-Hill, New York, 1990.
    [33] 李勝源,交錯耦合平面微波濾波器之研製,國立成功大學碩士論文,1998.
    [34]J. S. Hong, and S. Li, "Theory and Experiment of Dual-Mode Microstrip Triangular Patch Resonators and Filters," IEEE Trans. Microwave Theory Tech., 52, 4, 2004.
    [35] J. Helszajn, and D. S. James, "Planar triangular resonators with magnetic walls," IEEE Trans. Microwave Theory Tech., 26, 95, 1978.
    [36] J. S. Hong, and S. Li, "Dual-mode microstrip triangular patch resonators and filters," IEEE MTT-S Int. Microwave Symp. Dig., 3, 1901, 2003.
    [37] I. Wolff, "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electron. Lett., 8, 302, 1972.
    [38] J. S. Hong, and M. J. Lancaster, "Microstrip bandpass filter using degenerate modes of a novel meander loop resonator," IEEE Microwave Guided Wave Lett., 5, 371, 1995.
    [39] J. A. Curitis, and S. J. Fiedziuszko, "Miniature dual mode microstrip filters," IEEE MTT-S Int. Microwave Symp. Dig., 2, 443, 1991.
    [40] R. R. Mansour, "Design of superconductive multiplexers using single-mode and dual-mode filters," IEEE Trans. Microwave Theory Tech., 42, 1411, 1994.
    [41]W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators," IEEE on Microwave Theory and Techniques, 18, 476, 1970.
    [42]D. Kajfez, "Computed Model Field Distribution for Isolated Dielectric Resonators," IEEE. Trans. MTT, 32, 1609, 1984.
    [43]P. Wheless, and D.Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," IEEE. MTT-S Symposium Dig., 85, 473, 1985.
    [44]Y. Kobayashi, and N. Katoh, "Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method," IEEE. Trans. MTT, 33, 586, 1985.
    [45]O. V. Karpova, "Spin diffusion of optically oriented electrons and photon entrainment in n-gallium arsenide," Soviet Phys., 1, 220,1959.
    [46]S. H. Cha, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE.Trans.MTT, 33, 519, 1985.
    [47]B. W. Hakki, and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range," IEEE. Trans.MTT, 8, 402, 1960.
    [48]Y. Kobayashi, and S. Tanaka, "Resonant Modes of a Dielectric Resonator Short-Circuited at Both Ends by Parallel Conducting Plates," IEEE. Trans. MTT, 28, 1077, 1980.
    [49] 張盛富、戴明鳳,無線通信之射頻被動電路設計,全華出版社,台北,1998.
    [50] T. Edwards, "Foundations for Microstrip Circuit Design," Wiley, Chichester, U. K. , 1991.

    下載圖示 校內:2006-07-04公開
    校外:2006-07-04公開
    QR CODE