| 研究生: |
林廷諠 Lin, Ting-Hsuan |
|---|---|
| 論文名稱: |
SAGCM磷化銦/砷化銦鎵平面型紅外光崩潰二極體研製 The Development of SAGCM InP/InGaAs Planar type Avalanche Photodiode |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | SAGCM 、砷化銦鎵/磷化銦 、平面式 、護環 、近紅外光 、光檢測器 |
| 外文關鍵詞: | SAGCM, InP/InGaAs, Planar type, Guard ring, SWIR, Photodiode |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為研製一個1100nm~1700nm波段,應用於光纖通訊與雷達偵測中的光崩潰二極體。在磷化銦基板上(InP substrate),用有機金屬化學氣相沉積系統(MOCVD)製作出砷化銦鎵/磷化銦磊晶層。單顆光崩潰二極體的直徑大小為150微米。 利用平面式結構配上直徑170微米的第一層外部護環以及兩圈寬度為5微米的護環結構能使光崩潰二極體擁有較低的暗電流以及穩定性。
在製程中,我們使用氮化矽作為擴散阻擋層以及鈍化層,分別用來定義擴散區以及降低元件的漏電流。p 型區域是透過快速熱擴散的技術,將未參雜的磷化銦覆蓋層成為p型磷化銦覆蓋層,進而形成光崩潰二極體。另外,鋅原子是目前用於砷化銦鎵光檢測器中最常見的p型參雜源。
兩種SAGCM磊片分別被製作成元件並且分析討論,不同的擴散條件定義了不同增益層的厚度,而不同的增益層厚度對元件的影響也在論文中被探討。最後成功製作出的光崩潰二極體,在-5V的偏壓下有著29pA 的低暗電流,而在95%崩潰電壓下僅有4.7nA的暗電流,並且擁有增益值 = 10 (-39V)。
In this thesis, we are going to fabricate an avalanche photodiode for optical receiver and lidar application, the the operation wavelength is between 1100nm~1700nm, which determinded by the InP/InGaAs materials. On top of the InP substrate, we grown a thin InP/InGaAs epitaxy layer by MOCVD. The diameter of the avalanche photodiode device is 150m, the device is designed with GR and FGR structure for preventing edge breakdown and a lower dark current.
In our process, to define the p-type area and suppressing dark current, SiNx flim is chosen for diffusion hardmask and passivation layer. The p type region is form by diffusing zinc dopant into the InP cap layer by using rapid thermal diffusion process (RTD), zinc is the mostly used p-type dopant for InP/InGaAs photodetector now days.
Two types of SAGCM APD wafer have been fabricate into device, different diffusion depth defined different multiplication layer thickness. The different multiplication thickness for the device performance have been discussed in this thesis. Finally, an APD device with dark current about 29pA at -5V and 4.7nA at 95% breakdown volatage, gain factor is about 10 at 95% breakdown voltage.
[1] N. Namekata, S. Sasamori, and S. Inoue, "800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Optics Express, vol. 14, no. 21, pp. 10043-10049, 2006.
[2] H. Photonics, Photomultiplier tubes. Hamamatsu, 2000.
[3] J. Jackson, A. Morrison, D. Phelan, and A. Mathewson, "A novel silicon Geiger-mode avalanche photodiode," in Electron Devices Meeting, 2002. IEDM'02. International, 2002, pp. 797-800: IEEE.
[4] R. H. Hadfield, "Single-photon detectors for optical quantum information applications," Nature photonics, vol. 3, no. 12, p. 696, 2009.
[5] Y. Zhao et al., "InGaAs–InP avalanche photodiodes with dark current limited by generation-recombination," Optics express, vol. 19, no. 9, pp. 8546-8556, 2011.
[6] C. Skrimshire et al., "Reliability of mesa and planar InGaAs PIN photodiodes," IEE Proceedings J (Optoelectronics), vol. 137, no. 1, pp. 74-78, 1990.
[7] M. Ravi, A. DasGupta, and N. DasGupta, "Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment," Journal of crystal growth, vol. 268, no. 3-4, pp. 359-363, 2004.
[8] B. Lee and I. Yun, "Effect of different etching processes on edge breakdown suppression for planar InP/InGaAs avalanche photodiodes," Microelectronics journal, vol. 33, no. 8, pp. 645-649, 2002.
[9] S. Ganichev, A. Dmitriev, S. Emel'yanov, Y. Terent'ev, I. Yaroshetskii, and I. Yassievich, "Impact ionization in semiconductors under the influence of the electric field of an optical wave," Soviet physics JETP, vol. 63, no. 2, pp. 256-263, 1986.
[10] L. Tarof, D. Knight, K. Fox, C. Miner, N. Puetz, and H. Kim, "Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery," Applied physics letters, vol. 57, no. 7, pp. 670-672, 1990.
[11] Y. Liu, S. R. Forrest, J. Hladky, M. Lange, G. H. Olsen, and D. Ackley, "A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction," Journal of Lightwave Technology, vol. 10, no. 2, pp. 182-193, 1992.
[12] J. Jung, Y. H. Kwon, K. S. Hyun, and I. Yun, "Reliability of planar InP-InGaAs avalanche photodiodes with recess etching," IEEE Photonics Technology Letters, vol. 14, no. 8, pp. 1160-1162, 2002.
[13] L. Lin, W. Wang, N. Li, and W. Lu, "theoretical study of separate absorption, grading, charge, and multiplication InGaAs/InP single photon avalanche diode," in Numerical Simulation of Optoelectronic Devices, 2008. NUSOD'08. International Conference on, 2008, pp. 83-84: IEEE.
[14] S. Feng, J. Hu, Y. Lu, B. V. Yakshinskiy, J. D. Wynn, and C. Ghosh, "Comparative studies of p-type InP layers formed by Zn3As2 and Zn3P2 diffusion," Journal of electronic materials, vol. 32, no. 9, pp. 932-934, 2003.
[15] O. Pitts, W. Benyon, D. Goodchild, and A. SpringThorpe, "Multiwafer zinc diffusion in an OMVPE reactor," Journal of Crystal Growth, vol. 352, no. 1, pp. 249-252, 2012.
[16] D. Vasileska, "PHOTODETECTORS."
[17] S. Kasap, "Photovoltaic devices," Optoelectronics and photonics: Principles and practices, pp. 254-272, 2001.
[18] V. Swaminathan and A. Macrander, Materials aspects of GaAs and InP based structures. Prentice-Hall, Inc., 1991.
[19] R. W. Hoogeveen and A. P. Goede, "Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere," Infrared Physics & Technology, vol. 42, no. 1, pp. 1-16, 2001.
[20] D. A. Neamen, Semiconductor physics and devices. McGraw-Hill New York, 1997.
[21] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
[22] G. Reeves and H. Harrison, "Obtaining the specific contact resistance from transmission line model measurements," IEEE Electron device letters, vol. 3, no. 5, pp. 111-113, 1982.
[23] M. Fukuda, Optical semiconductor devices. John Wiley & Sons, 1999.
[24] W. Grant, "Electron and hole ionization rates in epitaxial silicon at high electric fields," Solid- State Electronics, vol. 16, no. 10, pp. 1189-1203, 1973.
[25] A. Tosi, F. Acerbi, A. Dalla Mora, M. Itzler, and X. Jiang, "Active area uniformity of InGaAs/InP single- photon avalanche diodes," IEEE photonics journal, vol. 3, no. 1, pp. 31-41, 2011.
校內:2023-03-01公開