簡易檢索 / 詳目顯示

研究生: 朱佑軒
Chu, Yu-Hsuan
論文名稱: 使用電容陣列共振腔壓控振盪器之4.8 GHz三角積分器小數型鎖相迴路設計
4.8 GHz Fractional-N Delta-Sigma Modulator PLL Design with Switchable Capacitor Bank LC VCO
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 126
中文關鍵詞: 電容陣列壓控振盪器非整數型鎖相迴路取樣型低通迴路濾波器高速數位預除頻器
外文關鍵詞: Capacitor arrar, Voltage-controlled oscillator, Fractional-N phase-locked loop, Sampling low-pass filter, High speed digital prescalar
相關次數: 點閱:84下載:70
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為4.8 GHz鎖相迴路電路設計,應用於高頻訊號合成器系統中做為基頻訊號來源,對於突波表現以及訊號解析度有更高的要求。本論文內容主要分為使用電容陣列之壓控振盪器以及小數型鎖相迴路的理論、設計與實作結果。壓控振盪器及小數型鎖相迴路均為採用TSMC 0.18μm 1P6M製程實現,並且以on-wafer的方式進行量測。
    壓控振盪器為鎖相迴路核心,關乎輸出訊號品質之好壞,本論文中振盪器以電感電容組成之共振腔式壓控振盪器架構,與一般的環形振盪器相比,其優點為優異的相位雜訊表現以及較小的壓控靈敏度;另外採用電容陣列方式拓展頻率可變範圍的同時保有較小的壓控靈敏度,減輕壓控振盪器對於供應電壓之靈敏度,並對於整體鎖相迴突波達到抑制作用。
    電感品質因子以及偏壓電流為共振腔壓控振盪器相位雜訊的重要因子,核心電路部分著重於這兩者的設計並對於輸出相位雜訊進行深入探討,使得此壓控振盪器設計中同時具有較好的共振腔負載阻抗特性以及由理論得出最適當的偏壓電流,因此在本論文中的壓控振盪器得以有較好的相位雜訊表現並保有較低的功率消耗。透過模擬之頻率可變範圍介於4.21 GHz至5.24 GHz,量測時介於4.02 GHz至5.24 GHz。相位雜訊模擬時在頻率偏移1 MHz時最佳表現為-124.3 dBc/Hz,而量測時最佳表現為-124.5 dBc/Hz,核心功耗為2.4 mW,輸出功率介於 -2 dBm至 +2 dBm。
    非整數型鎖相迴路系統包含子電路如:相位頻率偵測器(Phase frequency detector)、充電泵(Charge pump)、低通濾波器(Low pass filter)、壓控振盪器(Voltage-controlled oscillator)、預除頻器(Pre-scalar)、多模除頻器(Multi-modulus divider)以及三角積分調變器(Delta-sigma modulator)。非整數運算藉由三階三角積分調變器使鎖相迴路操作於不同整數除數之間達成平均的小數除數,由於三角積分器對於系統線性度要求甚高,因此採用動態匹配式充電泵架構,確保上流電流之匹配,並且對於相位頻率偵測器與充電泵對於輸入範圍的線性度進行模擬,得出其近似為二次函數之誤差項。由於低通濾波器之階數必須大於等於三角積分器之階數才得以濾除noise shaping過後集中在高頻的取樣雜訊,因此採用三階的迴路濾波器,也進一步對於輸入突波進行衰減,降低其對於輸出頻譜之影響。
    一般來說,壓控振盪器與鎖相迴路其他子電路比較起來相對耗能,本設計中藉由優化電感及偏壓電流,壓低壓控振盪器功耗,另外由於預除頻器為操作速度最高之數位子電路,本論文對於預除頻器電路進行系統性優化,包括架構的選擇以及電晶體的合併,得以提升速度表現及大幅降低預除頻器的功率消耗,以上原因導致鎖相迴路整體系統達到較低的功耗;並且對於預除頻器進行完整的建立時間(setup time)及保持時間(hold time)的模擬,確保其數位運作在高頻下的理論操作極限,提升晶片之良率。
    鎖相迴路參考頻率輸入為85.71 MHz,輸出頻率介於4.29 GHz至5.23 GHz,頻率解析度約為5.36 MHz,參考突波強度約為-48.73 dBm,模擬時在頻率偏移量為1 MHz時的相位雜訊表現為 -102.48 dBc/Hz,量測時在頻率偏移量為1 MHz時的相位雜訊表現為 -102.96 dBc/Hz,輸出功率介於-1 dBm至 +2 dBm之間,整體功率消耗為6.6mW。

    This thesis can be divided mainly into two parts: the voltage-controlled oscillator (VCO) and the complete system of the fractional PLL. The VCO and the PLL are both fabricated with TSMC 0.18 μm CMOS process.
    The VCO possesses a wide tuning range while keeping the K_vco small due to the credit of the capacitor banks. Reducing the K_vco contributes to better phase noise performance and spur level attenuation in the PLL system on account of its loop dynamics. The tuning range of 4.02 GHz ~ 5.24 GHz (26.3%) was measured. The best phase noise performance recorded was -124.5 dBc/Hz at 1 MHz frequency offset. The power consumption of the core circuit is about 2.4 mW, with output power greater than -2 dBm. The chip covers up about 0.69 mm².
    The PLL contains a phase and frequency detector (PFD), charge pump (CP), low-pass filter (LPF), voltage-controlled oscillator (VCO), multi-modulus divider (MMD) and a delta-sigma modulator (DSM). The PLL achieves fractional dividends by DSM modulating MMD. The reference frequency is set to be 85.71 MHz and the PLL operates between 4.285 GHz and 5.229 GHz. The best phase noise performance is -102.96 dBc/Hz at 1 MHz frequency offset. The power consumption of the core circuit is 6.6 mW, with output power greater than -2 dBm. The chip covers up about 0.87 mm².

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 論文架構 4 第二章 使用電容陣列之共振腔壓控振盪器 5 2.1 壓控振盪器 5 2.1.1 振盪器原理 5 2.1.2 共振腔壓控振盪器 7 2.1.3 頻率可調範圍 8 2.1.4 壓控靈敏度 10 2.1.5 相位雜訊 12 2.1.6 電源電壓抑制比 22 2.2 電路設計分析 24 2.2.1 電容陣列設計 24 2.2.2 振盪器設計 26 2.3 壓控振盪器模擬結果 28 2.4 使用電容陣列之共振腔壓控振盪器量測環境與結果 30 2.4.1 量測環境設置 30 2.4.2 量測結果與討論 32 第三章 4.8GHz 非整數型鎖相迴路 36 3.1 鎖相迴路簡介 36 3.1.1 鎖相迴路系統應用 37 3.1.2 鎖相迴路系統分析 38 3.1.3 鎖相迴路雜訊分析 47 3.1.4 鎖相迴路突波分析 50 3.2 非整數型鎖相迴路分析 51 3.2.1 整數與非整數型鎖相迴路比較 52 3.2.2 小數指狀突波(Fractional Spur)的產生與抑制方法 52 3.2.3 三角積分調變器分析 54 3.2.4 三角積分調變器應用於非整數型鎖相迴路雜訊分析 59 3.2.5 雜訊摺疊效應(Noise folding effect) 60 3.3 非整數型鎖相迴路設計 65 3.3.1 鎖相迴路系統設計 65 3.3.2 相位頻率偵測器電路設計 65 3.3.3 充電泵電路設計 67 3.3.4 取樣型迴路濾波器電路設計 70 3.3.5 壓控振盪器電路設計 74 3.3.6 預除頻器電路設計 76 3.3.7 多模除頻器電路設計 82 3.3.8 三角積分調變器電路設計 84 3.4 鎖相迴路電路整合模擬結果 89 3.5 非整數型鎖相迴路量測量測環境與結果 94 3.5.1 量測環境設置 94 3.5.2 量測結果與討論 96 第四章 結論 99 4.1 總結 99 4.2 未來展望 101 參考文獻 102

    [1] T. S. Rappaport et al., "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access, vol. 7, pp. 78729-78757, Jun. 2019.
    [2] Y. -S. Shih and J. -H. Tarng, "A Novel Design of High-speed Divide-by-3/4 Counter for a Dual-modulus Prescaler" IEICE Electronic Express. vol. 3. pp. 276-280, Jun. 2006.
    [3] A. A. Abidi, "Phase Noise and Jitter in CMOS Ring Oscillators," IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1803-1816, Aug. 2006.
    [4] N. R. Sivaraaj and K. K. A. Majeed, "A Comparative Study of Ring VCO and LC-VCO: Design, Performance Analysis, and Future Trends," IEEE Access, vol. 11, pp. 127987-128017, Nov. 2023.
    [5] Y. -J. Chan, C. -F. Huang, C. -C. Wu, C. -H. Chen and C. -P. Chao, "Performance Consideration of MOS and Junction Diodes for Varactor Application," IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2570-2573, Sept. 2007.
    [6] P. Andreani and S. Mattisson, "On the Use of MOS Varactors in RF VCOs," IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, Jun. 2000.
    [7] J. Gong, E. Charbon, F. Sebastiano and M. Babaie, "A 2.7mW 45fs rms-Jitter Cryogenic Dynamic-Amplifier-Based PLL for Quantum Computing Applications," IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, Apr. 2021, pp. 1-2
    [8] H. Darabi and A. A. Abidi, "Noise in RF-CMOS Mixers: A Simple Physical Model," IEEE Transactions on Solid State Circuits, vol. 35, no. 1, Jan. 2000
    [9] W. -L. Xu, X. -Z. Shi, G. -F. Wang, J. -G. Jiang and X. -N. Qi, "A CMOS LC-VCO with Enhanced PSR Based on Common-mode Replica Compensation," International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, Nov. 2010, pp. V8-174-V8-177
    [10] X. Wang and B. Bakkaloglu, "A 2.4-GHz LC-Tank VCO with Minimum Supply Pushing Regulation Technique," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, Jun. 2007, pp. 127-130
    [11] S. Magierowski, K. Iniewski and S. Zukotynski, "A Wideband LC-VCO with Enhanced PSRR for SOC Applications," IEEE International Symposium on Circuits and Systems, Vancouver, BC, Canada, May 2004, pp. I-173 ~ I-176
    [12] P. Mirajkar, J. Chand, S. Aniruddhan and S. Theertham, "Low Phase Noise Ku-Band VCO with Optimal Switched-Capacitor Bank Design," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 589-593, Mar. 2018.
    [13] J. M. Lopez-Villegas, J. Samitier, C. Cane, P. Losantos and J. Bausells, "Improvement of the Quality Factor of RF Integrated Inductors by Layout Optimization," IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 1, pp. 76-83, Jan. 2000.
    [14] Y. -H. Kao and M. -T. Hsu, "Theoretical Analysis of Low Phase Noise Design of CMOS VCO," IEEE Microwave and Wireless Components Letters, vol. 15, no. 1, pp. 33-35, Jan. 2005.
    [15] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, ch. 5, Englewood Cliffs, NJ: Prentice-Hall, 1997.
    [16] A. Jerng and C. G. Sodini, "The Impact of Device Type and Sizing on Phase Noise Mechanisms," IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 360-369, Feb. 2005.
    [17] X. Li, W. -Y. Li and Z. -G. Wang, "A Wide Tuning Range LC-VCO Using Switched Capacitor Array Technique," International Symposium on Signals, Systems and Electronics, Nanjing, China, Oct. 2010, pp. 1-4
    [18] Y. Zhang et al., "A 5.8 GHz Implicit Class-F VCO in 180-nm CMOS Technology," IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 2019, pp. 1170-1172
    [19] M. Fang, A. Kumura and T. Yoshimasu, "A -197.3 dBc/Hz FoMT Wideband LC-VCO IC with an I-MOS Based Novel Varactor in 40-nm SOI CMOS," IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 2019, pp. 783-785
    [20] H. Guo, Y. Chen, P. -I. Mak and R. P. Martins, "20.1 A 5.0-to-6.36GHz Wideband-Harmonic-Shaping VCO Achieving 196.9dBc/Hz Peak FoM and 90-to-180kHz 1/f3 PN Corner Without Harmonic Tuning," IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, Feb. 2021, pp. 294-296
    [21] Y. -Q. Sun, W. Deng, H. -K. Jia, Z. -H. Wang and B. -Y. Chi, "A 4.4-GHz 193.2-dB FoM 8-Shaped-Inductor Based LC-VCO Using Orthogonal-Coupled Triple-Coil Transformer," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 10, pp. 4028-4032, Oct. 2022.
    [22] W. Rhee, "Design of High-performance CMOS Charge Pumps in Phase-locked Loops," IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, May. 1999, vol.2, pp. 545-548
    [23] H. -G. Ko, W. Bae, G. -S. Jeong and D. -K. Jeong, "Reference Spur Reduction Techniques for a Phase-Locked Loop," IEEE Access, vol. 7, pp. 38035-38043, Mar. 2019.
    [24] T. A. D. Riley, M. A. Copeland and T. A. Kwasniewski, "Delta-sigma Modulation in Fractional-N Frequency Synthesis," IEEE Journal of Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May 1993.
    [25] E. Temporiti, C. Weltin-Wu, D. Baldi, M. Cusmai and F. Svelto, "A 3.5 GHz Wideband ADPLL With Fractional Spur Suppression Through TDC Dithering and Feedforward Compensation," IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2723-2736, Dec. 2010.
    [26] S. E. Meninger and M. H. Perrott, "A Fractional- N Frequency Synthesizer Architecture Utilizing a Mismatch Compensated PFD/DAC Structure for Reduced Quantization-induced Phase Noise," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 839-849, Nov. 2003.
    [27] B. Miller and R. J. Conley, "A Multiple Modulator Fractional Divider," IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 3, pp. 578-583, Jun. 1991.
    [28] M. Kozak and I. Kale, "A Pipelined Noise Shaping Coder for Fractional-N Frequency Synthesis," IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 5, pp. 1154-1161, Oct. 2001.
    [29] V. Mazzaro and M. P. Kennedy, "Folded Noise Prediction in Nonlinear Fractional-N Frequency Synthesizers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4038-4048, Oct. 2021.
    [30] Behzad Razavi, RF Microelectronics, Second Edition, Ch.11, 2011.
    [31] K. Sun, L. Lu, S. -T. Ye, J. -L. Wang, L. -M. Li and X. -N. Fan, "A 27-39 GHz Fractional-N PLL For 5G mm-Wave Communication with Improved Extended Range Multi-Modulus Divider," Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, Dec. 2023, pp. 849-851
    [32] T. -H. Lin, C. -L. Ti and Y. -H. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional- N PLLs," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 877-885, May 2009.
    [33] Behzad Razavi, "A 2.6GHz/5.2GHz Frequency Synthesizer in 0.4um CMOS Technology," Phase-Locking in High-Performance Systems: From Devices to Architectures, IEEE, pp.551-557, Jun. 2003.
    [34] S. E. Meninger et al., “A 1-MHz Bandwidth 3.6GHz 0.18-um CMOS Fractional-N Synthesizer Utilizing a Hybrid PFD/DAC Structure for Reduced Broadband Phase Noise.,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 966-980, Apr. 2006.
    [35] M. H. Perrott, M. D. Trott and C. G. Sodini, "A Modeling Approach for Sigma-Delta Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis," IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp. 1028-1038, Aug. 2002.
    [36] K. J. Wang, A. Swaminathan and I. Galton, "Spurious Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4 GHz Fractional-N PLL," IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2787-2797, Dec. 2008.
    [37] X. Bai, P. Patel and X. Zhang, "A New Statistical Setup and Hold Time Definition," IEEE International Conference on IC Design and Technology, Austin, TX, USA, May 2012, pp. 1-4
    [38] B. Razavi, "TSPC Logic [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 10-13, Fall 2016.
    [39] Q. -T. Huang and R. Rogenmoser, "Speed Optimization of Edge-triggered CMOS Circuits for Gigahertz Single-phase Clocks," IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 456-465, Mar. 1996.
    [40] G. -C. Huang, J. Zhang, Y. Wu and B. -S. Kim, "A Multiband Fractional-N PLL for IEEE802.11 a/b/g and GPS Applications," IEEE Asia Pacific Microwave Conference (APMC), pp. 968-971, Nov. 2017.
    [41] X. -H. Huang, B. -W. Wang, W. -G. Rhee and Z. -H. Wang, "A 5.4GHz ΔΣ Bang-Bang PLL with 19dB In-Band Noise Reduction by Using a Nested PLL Filter," International Symposium on VLSI Design, pp. 1-2, Aug. 2020.
    [42] Y. Zhang et al., "A Fractional- N PLL With Space–Time Averaging for Quantization Noise Reduction," IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 602-614, Mar. 2020.
    [43] J. -N. Jiang, T. -W. Yan, D. -D. Zhou, A. I. Karsilayan and J. Silva-Martinez, "A 2.3-3.9 GHz Fractional-N Frequency Synthesizer with Charge Pump and TDC Calibration for Reduced Reference and Fractional Spurs," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 71-74, Jun. 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE