簡易檢索 / 詳目顯示

研究生: 陳政均
Chen, Zheng-Jun
論文名稱: 大幅提昇鈣鈦礦發光二極體元件於低電流下的效能表現
Markedly enhance the performance of perovskite-based light-emitting diodes under the low current regime
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 有機鈣鈦礦發光二極體鹽類摻雜陷阱鈍化
外文關鍵詞: perovskite light-emitting diodes, salt additive, passivation of traps
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在先前的研究中,我們提出一個有效提升鈣鈦礦發光二極體的改善方法,以綠光材料CH3NH3PbBr3為例,使用甲胺氣體修飾鈣鈦礦薄膜所製作出的有機鈣鈦礦發光二極體元件,其最大亮度可達70,000 cd/m2且發光效率可達15 cd/A。然而,元件的亮度-電流密度曲線卻顯示不正常的非線性趨勢,這項結果指出鈣鈦礦晶體薄膜界面間高濃度的缺陷態,仍是決定元件效率的關鍵所在。所以,藉由摻雜相反電荷離子的方法去鈍化晶體界面的缺陷態,我們可以大幅地提升鈣鈦礦發光二極體元件於低電流密度下的亮度和發光效率,此外,元件的亮度-電流密度曲線亦可回復到有機發光二極體元件的線性趨勢。
      元件結構為Glass / ITO / NiOx / 摻雜溴化鉀(KBr)或氯化膽鹼(Choline chloride)之CH3NH3PbBr3 / TPBi / LiF / Al。鈣鈦礦發光二極體在電流密度為10 mA/cm2時,摻雜溴化鉀的元件,其亮度、發光效率和未摻雜的元件相比下,有6倍的提升;而摻雜氯化膽鹼的元件,則有10倍以上的提升。

    In the previous study, we presented the efficient methylammonium lead bromide (CH3NH3PbBr3)-based hybrid light-emitting diodes (LED) by the modification of perovskite films with methylamine gas, the maximum brightness >70,000 cd/m2 and the luminous efficiency (LE) >15 cd/A. However, the luminance-current density curve of device shows an abnormal non-linear trend. This result indicates that the high concentration of traps in the interface of perovskite crystal film is still the key to determining the performance of the device. Therefore, we can greatly improve the brightness and luminous efficiency of the perovskite light-emitting diode at low current density by doping the opposite charge ion to passivate the trap states of the crystal interface. In addition, the luminance-current density curve of the device can also be reverted to the linear trend like the organic light-emitting diode.
    The device structure is glass/indium-tin-oxide/NiOx/CH3NH3PbBr3/TPBi/LiF/Al, the perovskite film doped with potassium bromide (KBr) or choline chloride. Perovskite light-emitting diodes doped with potassium bromide at a current density of 10 mA/cm2, exhibit 6-fold increase in brightness and LE as compared to those of the controlled cell without doping potassium bromide. The devices doped with choline chloride at a current density of 10 mA/cm2, exhibit 10-fold increase in brightness and LE as compared to those of the controlled cell without doping choline chloride.

    摘要 I Extended Abstract II 致謝 XV 目錄 XVII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 有機電激發光元件的發展 3 1-3 研究動機與大綱 9 1-3-1 研究動機 9 1-3-2 論文大綱 11 第二章 鈣鈦礦發光二極體發展 12 2-1 前言 12 2-2 有機電激發光元件的結構及操作原理 14 2-3 鈣鈦礦發光二極體重要的文獻回顧 18 2-4 摻雜鹽類於鈣鈦礦薄膜的成膜改善 24 2-5 鈍化缺陷於鈣鈦礦太陽能電池的元件改善 27 2-6 本章結論 30 第三章 元件製作與實驗步驟 32 3-1 前言 32 3-2 鈣鈦礦發光二極體的製備過程 33 3-2-1 ITO基板清潔及圖案化 33 3-2-2 ITO基板清洗 36 3-2-3 電洞傳輸層製作 36 3-2-4 主動層製作 37 3-2-5 電子傳輸層製作 38 3-2-6 陰極製作 39 3-3 元件光電特性量測 41 3-3-1 電流-亮度-電壓量測系統 41 3-3-2 掃描式電子顯微鏡 41 3-3-3 光致發光光譜儀 42 3-3-4 紫外-可見光(UV-Vis)吸收光譜儀 43 3-3-5 X光繞射儀 43 3-3-6 時間解析光致發光光譜儀 44 3-3-7 時間解析電致發光光譜儀 45 3-4 本章結論 46 第四章 改善鈣鈦礦發光二極體之研究 47 4-1 前言 47 4-2 摻雜溴化鉀對於鈣鈦礦薄膜及發光二極體之影響 49 4-2-1 摻雜溴化鉀於鈣鈦礦發光二極體之電性量測 49 4-2-2 摻雜不同鹽類於鈣鈦礦發光二極體之電性量測 53 4-2-3 摻雜溴化鉀於鈣鈦礦薄膜之形貌分析 55 4-2-4 摻雜溴化鉀於鈣鈦礦薄膜之元素分析 56 4-2-5 摻雜溴化鉀於鈣鈦礦薄膜之結晶程度分析 59 4-2-6 摻雜溴化鉀於鈣鈦礦薄膜之光學性質分析 60 4-2-7 本節結論 63 4-3 摻雜氯化膽鹼對於鈣鈦礦薄膜及發光二極體之影響 64 4-3-1 摻雜氯化膽鹼於鈣鈦礦發光二極體之電性量測 65 4-3-2 摻雜碘/溴/氯化膽鹼於鈣鈦礦發光二極體之電性量測 69 4-3-3 摻雜氯化膽鹼於鈣鈦礦薄膜之形貌分析 71 4-3-4 摻雜氯化膽鹼於鈣鈦礦薄膜之結晶程度分析 73 4-3-5 摻雜氯化膽鹼於鈣鈦礦薄膜之光學性質分析 75 4-3-6 摻雜氯化膽鹼於鈣鈦礦發光二極體之時間解析電致發光分析 78 4-3-7 本節結論 81 4-4 本章結論 82 第五章 總結與未來工作 83 5-1 總結 83 5-2 未來工作展望 84 參考文獻 86

    [1] J. Kido, M. Kimura, K. Nagai, “Multilayer white light-emitting organic electroluminescent device”, Science 267, 1332 (1995).
    [2] S. R. Forrest, “The road to high efficiency organic light emitting devices”, Org. Electron. 4, 45 (2003).
    [3] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042 (1963).
    [4] C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 57, 913 (1987).
    [5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
    [6] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREL, accessed 27 June 2017).
    [7] J. C. -Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438 (2013).
    [8] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, Adv. Funct. Mater. (eds A. Tiwari and L. Uzun), John Wiley & Sons, Inc., Hoboken, NJ, USA, 535-566 (2015).
    [9] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phys. Chem. C 118, 5615 (2014).
    [10] M. Era, S. Morimoto, T. Tsutsui, S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4”, Appl. Phys. Lett. 65, 676 (1994).
    [11] K. Chondroudis, D. B. Mitzi, “Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers”, Chem. Mat. 11, 3028 (1999).
    [12] Z. -K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nat. Nanotechnol. 9, 687 (2014).
    [13] Y. -H. Kim, H. Cho, J. H. Heo, T. -S. Kim, N. Myoung, C. -L. Lee, S. H. Im, T. -W.
    Lee, “Multicolored organic/inorganic hybrid perovskite light-emitting diodes”, Adv. Mater. 27, 1248 (2015).
    [14] R. L. Z. Hoye, M. R. Chua, K. P. Musselman, G. Li, M. -L. Lai, Z. -K. Tan, N. C.
    Greenham, J. L. MacManus-Driscoll, R. H. Friend, D. Credgington, “Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors”, Adv. Mater. 27, 1414 (2015).
    [15] J. Wang, N. Wang, Y. Jin, J. Si, Z. -K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, “Interfacial control toward efficient and low-voltage perovskite light-emitting diodes”, Adv. Mater. 27, 2311 (2015).
    [16] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z. -K. Tan, M. L. Lai, J. L. MacManus-Driscoll, N. C. Greenham, R. H. Friend, “Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix”, J. Phys. Chem. Lett. 6, 446 (2015).
    [17] A. Sadhanala, A. Kumar, S. Pathak, A. Rao, U. Steiner, N. C. Greenham, H. J. Snaith, R. H. Friend, “Electroluminescence from organometallic lead halide perovskite-conjugated polymer diodes”, Adv. Electron. Mater. 1, 1500008 (2015).
    [18] G. Li, Z. -K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. -W. Lim, R. H. Friend, N. C. Greenham, “Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix”, Nano Lett. 15, 2640 (2015).
    [19] O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon, I. Mora-Sero, “Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer”, J. Phys. Chem. Lett. 6, 1883 (2015).
    [20] A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Z. Hoye, K. C. Gödel, T. Bein, P. Docampo, S. E. Dutton, M. F. L. De Volder, R. H. Friend, “Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications”, Nano Lett. 15, 6095 (2015).
    [21] H. Cho, S. -H. Jeong, M. -H. Park, Y. -H. Kim, C. Wolf, C. -L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. -W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
    [22] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
    [23] M. I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed, O. M. Bakr, “Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids”, ACS Energy Lett. 1, 840 (2016).
    [24] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, “Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells”, Nat. Photonics 10, 699 (2016).
    [25] L. Meng, E. -P. Yao, Z. Hong, H. Chen, P. Sun, Z. Yang, G. Li, Y. Yang, “Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage”, Adv. Mater. 29, 1603826 (2017).
    [26] Z. Chen, C. Zhang, X. -F. Jiang, M. Liu, R. Xia, T. Shi, D. Chen, Q. Xue, Y. -J. Zhao, S. Su, H. -L. Yip, Y. Cao, “High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film”, Adv. Mater. 29, 1603157 (2017).
    [27] H. -K. Seo, H. Kim, J. Lee, M. -H. Park, S. -H. Jeong, Y. -H. Kim, S. -J. Kwon, T. -H. Han, S. Yoo, T. -W. Lee, “Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode”, Adv. Mater. 29, 1605587 (2017).
    [28] X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu, K. L. Karen, Y. Zheng, S. Liu, S. Chen, K. Wang, X. W. Sun, “Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic–inorganic mixed cations”, Adv. Mater. 29, 1606405 (2017).
    [29] J. -W. Lee, Y. J. Choi, J. -M. Yang, S. Ham, S. K. Jeon, J. Y. Lee, Y. -H. Song, E. K. Ji, D. -H. Yoon, S. Seo, H. Shin, G. S. Han, H. S. Jung, D. Kim, N. -G. Park, “In-situ formed type I nanocrystalline perovskite film for highly efficient light-emitting diode”, ACS Nano 11, 3311 (2017).
    [30] L. Zhao, Y. -W. Yeh, N. L. Tran, F. Wu, Z. Xiao, R. A. Kerner, Y. L. Lin, G. D. Scholes, N. Yao, B. P. Rand, “In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices”, ACS Nano 11, 3957 (2017).
    [31] E. -P. Yao, Z. Yang, L. Meng, P. Sun, S. Dong, Y. Yang, Y. Yang, “High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites”, Adv. Mater. 29, 1606859 (2017).
    [32] C. Zuo, L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive”, Nanoscale 6, 9935 (2014).
    [33] K. M. Boopathi, R. Mohan, T. -Y. Huang, W. Budiawan, M. -Y. Lin, C. -H. Lee, K. -C. Ho, C. -W. Chu, “Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives”, J. Mater. Chem. A 4, 1591 (2016).
    [34] Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. -W. Koh, G. D. Scholes, B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites”, Nat. Photonics 11, 108 (2017).
    [35] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Prog. Photovoltaics 8, 473 (2000).
    [36] Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications”, Small 8, 1392 (2012).
    [37] B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, C. -S. Jiang, “Innovative dual function nc-SiOx : H layer leading to a >16% efficient multi-junction thin-film silicon solar cell”, Appl. Phys. Lett. 99, 113512 (2011).
    [38] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells”, Nat. Commun. 5, 5784 (2014).
    [39] J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J. -P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, E. H. Sargenta, “Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes”, Nat. Commun. 6, 7081 (2015).
    [40] A. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H. J. Snaith, “Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells”, Nano Lett. 14, 3247 (2014).
    [41] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, “Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites”, ACS Nano 8, 9815 (2014).
    [42] N. Ahn, D. -Y. Son, I. -H. Jang, S. M. Kang, M. Choi, N. -G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide”, J. Am. Chem. Soc. 137, 8696 (2015).
    [43] J. -W. Lee, H. -S. Kim, N. -G. Park, “Lewis acid-base adduct approach for high efficiency perovskite solar cells”, Accounts Chem. Res. 49, 311 (2016).
    [44] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations”, Nat. Energy 2, 17102 (2017).
    [45] Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene”, Nat. Commun. 7, 12806 (2016).
    [46] D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, M. K. Nazeeruddin, “High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3”, Adv. Mater. 28, 2910 (2016).
    [47] F. Wang, W. Geng, Y. Zhou, H. -H. Fang, C. -J. Tong, M. A. Loi, L. -M. Liu, N. Zhao “Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells”, Adv. Mater. 28, 9986 (2016).
    [48] T. Walter, R. Herberholz, C. Müller, H. W. Schock, “Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions”, J. Appl. Phys. 80, 4411 (1996).
    [49] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, “Toxicity of organometal halide perovskite solar cells”, Nat. Mater. 15, 247 (2016).
    [50] J. -Y. Jeng, K. -C. Chen, T. -Y. Chiang, P. -Y. Lin, T. -D. Tsai, Y. -C. Chang, T. -F. Guo, P. Chen, T. -C. Wen, Y. -J. Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells”, Adv. Mater. 26, 4107 (2014).
    [51] W. -C. Lai, K. -W. Lin, T. -F. Guo, J. Lee, “Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer”, IEEE Trans. Electron Devices 62, 1590 (2015).
    [52] W. -C. Lai, K. -W. Lin, Y. -T. Wang, T. -Y. Chiang, P. Chen, T. -F. Guo, “Oxidized Ni/Au transparent electrode in efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells”, Adv. Mater. 28, 3290 (2016).
    [53] C. W. Ma, O. Lengyel, J. Kovac, I. Bello, C. S. Lee, S. T. Lee, “Time-resolved transient electroluminescence measurements of emission from DCM-doped Alq3 layers”, Chem. Phys. Lett. 397, 87 (2004).
    [54] H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J. -M. Heo, S. Ahn, T. -W. Lee, “High-efficiency solution-processed inorganic metal halide perovskite light-emitting diodes”, Adv. Mater. 1700579 (2017).

    無法下載圖示 校內:2022-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE