簡易檢索 / 詳目顯示

研究生: 許中倫
Hsu, Chung-Lun
論文名稱: 高效率三角積分調變器之設計與實現
Design and Implementation of High Power-Efficient Sigma-Delta Modulators
指導教授: 劉濱達
Liu, Bin-Da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 106
中文關鍵詞: 增益增強型伸縮放大器雙取樣技術增益增強型電流鏡式放大器三角積分調變器
外文關鍵詞: gain-enhanced current mirror OPAMP, sigma-delta modulator, double-sampled technique, gain-boosting telescopic OPAMP
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩種三角積分調變器:一個適用於居家型生醫量測儀器,另一個適用於無線通訊領域。對此兩種應用,其訊號頻寬範圍以及調變器架構的考量是截然不同,因此同時從系統架構層面以及電路層面著手,以設計低功率轉換效率的調變器。以下分別描述此兩種三角積分調變器:
    1)一個應用於生醫感測之1.8伏特23微瓦三階三角積分調變器:
    此三角積分調變器使用三階雜訊移頻單位元單迴路架構設計,可忍受部分類比電路的不理想因素。並且,使用增益增強型電流鏡式放大器,以減少整體積分器的功率消耗;並將放大器中的各個電晶體,設計於近弱反轉區,可提升放大器的功率效率。除此之外,等比例調降第二級及第三級積分器的電容值,可再進一步減少功率消耗。
    此三角積分調變器是使用0.18微米製程,1.2伏特供應電壓。從模擬結果得知此當此調變器操作於2千赫茲訊號頻寬、100倍超取樣率時,訊噪比為85-dB ,並消耗功率23微瓦。
    2)一個應用於訊號頻寬、使用雙取樣技術之1.2伏特、95-dB訊噪比、8.3百萬赫茲訊號頻寬的三角積分調變器:
    此三角積分調變器使用低失真全前授單迴路、四位元量化器之四階雜訊移頻架構設計,使積分器只處理量化誤差而不包含輸入訊號,並大幅降低訊號頻帶內的量化誤差,提升整體操作速度。而在電路層面,同時使用高效率雙取樣技術以及增益增強型伸縮放大器,可進一步提升調變器的功率效率;此外,使用資料加權平均演算法,降低數位類比轉換器中不匹配效應。
    此三角積分調變器器是使用低功率1層多晶矽6層金屬線製程設計。從模擬結果得知,此調變器在24倍超取樣率下效能可達到95-dB訊噪比,包含類比及數位電路部分總共消耗53毫瓦。可藉由計算FOM得知功率轉換效率為3×103 pJ/轉換,其效率高於其他已發表的調變器。

    由以上兩個三角積分調變器的驗證結果可知,藉由同時考量系統架構及電路層面,可達到高功率轉換效率的特性,並對生醫感測器以及無線網路通訊領域提供了很好的解決方案。

    In this thesis, two sigma-delta modulators are proposed: one is for home-used human body bio-sensing application, and the other is for wireless communication application. There are quite different considerations in the view points of input signal bandwidth and modulator topology for these two applications. Systematic procedures which focus on both system and circuit levels are emphasized to design the high power efficient modulators. The two sigma-delta modulators are presented as below:
    1)A 1.2-V 23-μW 3rd-order Sigma-Delta Modulator for Bio-Sensing Application:
    The modulator is designed with third-order single-bit single-loop topology because of its low-sensitivities to the analog building blocks’ non-idealities. In the circuit level, the gain-enhanced current mirror OPAMP is adapted to minimize the power consumptions of the integrators. In addition, the transistors in OPAMP are operated near the weak inversion region to achieve higher power efficiency. Furthermore, the sizes of capacitor are scaled down in the second and third integrators for saving more power.
    The simulation results show the SNDR of the sigma-delta modulator is 85-dB with 2-kHz signal bandwidth and 100-X oversampling ratio. Also, it consumes 23-μW from 1.2-V power supply voltage by using a 0.18-μm 1P6M process.
    2)A 1.2-V, 95-dB SNDR, 8.3-MHz Signal-Bandwidth Sigma-Delta Modulator Using Double-Sampled Technique for Wide-Bandwidth Application:
    A four-bit fourth-order sigma-delta modulator is designed with low-distortion full feed-forward single-loop topology. Since each integrator only processes the quantization noise without input signal component, the in-band quantization noise is decreased significantly. Also, the operating speed can be raised. In the circuit level, the high-efficiency double-sampled technique and gain-boosting telescopic OPAMP are adopted to further raise the power efficiency. Moreover, the data weighted averaging algorithm is used to suppress the mismatching effect in the digital-to-analog converter.
    The sigma-delta modulator is implemented in 1P6M Low-Power technology. From the simulation results, a 95-dB SNDR is achieved with 53-mW total power consumption under 24-X oversampling ratio. The power efficiency of the proposed modulator which is 3×103 pJ/conversion, which is betterer than many published sigma-delta modulators.

    From the above results, the high power efficient sigma-delta modulators are achieved by considering both the system and circuit levels. Hence, the proposed modulators are excellent choices for bio-sensing and wireless communication applications

    Abstract..............................................................................................................................................i Acknowledgement............................................................................................................................v List of Tables .................................................................................................................................... x List of Figures ................................................................................................................................ xii Chapter 1 Introduction ....................................................................................................................... 1 1.1 Background and Motivation ....................................................................................................... 1 1.2 Organization of the Thesis .......................................................................................................... 3 Chapter 2 Fundamentals of Sigma-Delta Converter ....................................................................... 5 2.1 Introduction of Analog-to-Digital Converter .............................................................................. 5 2.2.1 Nyquist-rate converters ........................................................................................................ 6 2.1.2 Oversampling converters ..................................................................................................... 7 2.2 Sigma-Delta Modulator .............................................................................................................. 8 2.2.1 Oversampling technique ...................................................................................................... 8 2.2.2 Noise-shaping technique .................................................................................................... 11 2.3 Sigma-Delta Modulator Topologies .......................................................................................... 14 2.3.1 Single-loop topology .......................................................................................................... 15 2.3.2 Multi-stage topology .......................................................................................................... 16 2.3.3 Multi-bit quantization topology ......................................................................................... 17 2.4 Summary .................................................................................................................................. 18 Chapter 3 Analysis the Non-ideality in Sigma-Delta Modulator .................................................. 20 3.1 Integrator Leakage .................................................................................................................... 20 3.1.1 The leakage source of integrator ........................................................................................ 21 3.1.2 The integrator with leakage effect ..................................................................................... 22 3.2 Integrator Settling Error ............................................................................................................ 24 3.2.1 The settling error ................................................................................................................ 25 3.2.2 The effects of settling error ................................................................................................ 25 3.3 kT/C Noise in Switched-Capacitor Integrator .......................................................................... 26 3.4 Summary .................................................................................................................................. 27 Chapter 4 A 1.2-V, 85-dB SNDR, 23-μW 3rd-order Sigma-Delta Modulator for Bio-Sensing Application........................................................................................................................................ 28 4.1 Architecture Considerations ...................................................................................................... 29 4.2 Circuit Implementation ............................................................................................................. 32 4.2.1 Integrator ............................................................................................................................ 32 4.2.2 Gain-enhanced current mirror OPAMP ............................................................................. 34 4.2.3 1-bit quantizer design ......................................................................................................... 36 4.2.4 Clock generation ................................................................................................................ 37 4.2.5 Complete circuit diagram ................................................................................................... 38 4.3 Experimental Results ................................................................................................................ 39 4.3.1 Simulation results............................................................................................................... 39 4.3.2 Layout consideration .......................................................................................................... 40 4.3.3 Measurement results .......................................................................................................... 41 4.4 Summary .................................................................................................................................. 45 Chapter 5 A 1.2-V, 95-dB SNDR, 8.3-MHz Signal-Bandwidth Sigma-Delta Modulator Using Double-Sampled Technique for Wide-Bandwidth Application .................................................... 46 5.1 Architecture Considerations ...................................................................................................... 47 5.1.1 Considerations of conventional structure ........................................................................... 47 5.1.2 The full feed-forward structure .......................................................................................... 48 5.1.3 The fourth-order four-bit full feed-forward structure ........................................................ 51 5.2 Double-Sampled Integrator ....................................................................................................... 56 5.2.1 Introduction to double-sampled integrator ......................................................................... 56 5.2.2 The fully-floating double-sampled integrator .................................................................... 59 5.2.3 Design considerations of double-sampled sigma-delta modulator .................................... 61 5.3 Circuit Implementation ............................................................................................................. 66 5.3.1 Integrator ............................................................................................................................ 66 5.3.2 OPAMP .............................................................................................................................. 69 5.3.3 Active adder ....................................................................................................................... 76 5.3.4 Multi-bit quantizer ............................................................................................................. 79 5.3.5 Data weighted averaging (DWA) design ........................................................................... 82 5.3.6 Clock generation diagram .................................................................................................. 86 5.4 Simulation Results and Layout ................................................................................................. 89 5.5 Summary .................................................................................................................................. 93 Chapter 6 Conclusions and Future Work ....................................................................................... 95 6.1 Conclusions ............................................................................................................................... 95 6.2 Future Work .............................................................................................................................. 96

    [1] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston. MA: McGraw-Hill, 2001.
    [2] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
    [3] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.
    [4] F. Maloberti, Data Converters, Dordrecht, Netherlands: Springer. 2007.
    [5] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005.
    [6] S. R. Norsworthy, R. Schreier, Gabor C. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1997.
    [7] R. D. Rio, F. Medeiro, B. P. Verdu, J. D. Rosa, and A. R. Vazquez, CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom: Error Analysis and Practical Design, Dordrecht: Springer, 2006.
    [8] Y Geerts, M. Steyaert, and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters, Bosten, MA: Kluwer, 2002.
    [9] N. K. Young, Design of Low-Voltage Low-Power Sigma-Delta Modulators for Broadband High-Resolution A/D Conversion, Ann Anbor, MI: UMI, 2005.
    [10] L. Yao, M. Steyaert and W. Sansen, Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS, Dordrecht, German: Springer, 2006.
    [11] Y. Yang, A. Chokhawala, M. Alexander, J. Melanson, and D. Hester, “A 114-dB 68-mW chopper-stabilized stereo multibit audio ADC in 5.62mm2,” IEEE J. Solid-State Circuits, vol. 38, pp. 2061-2068, Dec. 2003.
    [12] A. Gharbiya and D. A. Johns, “On the implementation of input-feedforward delta-sigma modulators,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 53, pp.453-457, Apr. 2006.
    [13] J. Roh, S. Byun, Y. Choi, H. Roh, Y. G. Kim, and J. K. Kwon, “A 0.9-V 60-uW 1-bit fourth-order delta-sigma modulator with 83-dB dynamic range,” IEEE J. Solid-State Circuits, vol. 43, pp. 361-370, Feb. 2008.
    [14] P. C. Maulik, M. S. Chadha, W. L. Lee, and P. J. Crawley, “A 16-bit 250-kHz Delta-Sigma modulator and decimation filter,” IEEE J. Solid-State Circuits, vol. 35, pp. 458-467, Apr. 2000.
    [15] R. Schreier, “An Empirical study of high-order single-bit delta-sigma modulators,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Processing, vol. 40, pp.461-466, Apr. 1993.
    [16] J. Paramesh, R. Bishop, K. soumyanath, and D. Allstot, “An 11-bit 330-MHz 8X OSR sigma-delta modulator for next-generation WLAN,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007.
    [17] Y. Geerts, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 3.3-V 15-bit delta-sigma ADC with signal bandwidth of 1.1 MHz for ADSL applications,” IEEE J. Solid-State Circuits, vol. 34, pp. 927-936, July 1999.
    [18] T. L. Brooks, D. H. Robertson, D. F. Kelly, A. D. Muro, and S. W. Harston, “A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR,” IEEE J. Solid-State Circuits, vol. 32, pp. 1896-1996, Dec. 1997.
    [19] K. Nam, S. M. Lee, D. K. Su, and B. A. Wooley, “A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion,” IEEE J. Solid-State Circuits, vol. 40, pp. 1855-1864, Dec 2005.
    [20] P Malla, H. Lakdawala, K. Kornegay, and K. Soumyanath, “A 28mW spectrum–sensing reconfigurable 20Mhz 72dB-SNR 70-dB-SNDR DT delta-sigma ADC for 802.11n/WiMAX receivers,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 496-498.
    [21] Y. Ke, J. Craninckx, and G. Gielen, “A design approach for power-optimized fully reconfigurable delta sigma A/D converter for 4G radios,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 55, pp.229-233, Mar. 2008.
    [22] K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Taksuka, S. Takeuchi, and G. C. Temes, “A noise-coupled time-interleaved delta-sigma ADC with 4.2-MHz BW, -98dB THD, and 79dB SNDR,” in Proc. Int. Symp. Circuits and Syst., Feb. 2008 , pp. 494-496.
    [23] P. Balmelli and Q. huang, “A 25Ms/s 14-b 200-mW sigma-delta modulator in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 39, pp. 2161-2169, Dec. 2004.
    [24] T. H. Chang, L. R. Dung, J. Y. Guo, and K. J. Yang, “A 2.5-V 14-bit, 180-mW cascaded sigma-delta ADC for ADSL2+ application,” IEEE J. Solid-State Circuits, vol. 42, pp. 23572368, Nov. 2007.
    [25] J. Steensgaard, “Bootstrapped low-voltage analog switches,” in Proc. IEEE Int. Symp. Circuits and Syst., June 1999, pp. 29-32.
    [26] M. Dessouly and A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE J. Solid-State Circuits, vol. 36, pp. 349-355, Mar. 2001.
    [27] U. Moon, G. Temes, E. Bidari, M. Keskin, L. Wu, J. Steensgaard, and F. Maloberti, “Switched-capacitor circuit techniques in submicron low-voltage CMOS,” in Proc. IEEE Int. Conf. on VLSI and CAD, Oct. 1999, pp. 349-358.
    [28] A. M. Abo, and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May. 1999.
    [29] M. Dessouky and A. Kaiser, “Very low-voltage digital-audio delta-sigma modulator with 88-dB dynamic range using local switch bootstrapping” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 349-355, Mar. 2001.
    [30] M. Steyaert and J. Crols, “Switched-opamp: an approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, pp. 936-942, Aug. 1994.
    [31] M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, and N. Thakor, “VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing,” IEEE Trans. Biomed. Circuits Syst., vol.1, pp.63-72, Mar. 2007.
    [32] R Khonini-Poorfard, L. B. Lim and D. A. Johns, “Time-interleaved oversampling A/D converters: theory and practice,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Processing, vol. 44, pp.634-645, Apr. 1997.
    [33] N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawar, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundamental Theory and Applications, vol. 48, pp.261-271, Apr. 2001.
    [34] T. C. Choi and R. W. Brodersen, “Considerations for high-frequency switched-capacitor filters,” IEEE Trans. Circuits Syst., vol. 27, pp.545-551, June. 1980.
    [35] T. V. Burmas, K. C. Dyer, P. J. Hurst, and S. H. Lewis, “A second-order double-sampled delta-sigma modulator using additive-error switching,” IEEE J. Solid-State Circuits, vol. 31, pp. 284-293, Mar. 1996.
    [36] D. Senderowicz, G. Nicollini, S. Pernici, A. Nagari, P. Confalonieri, and C. Dallavalle, “Low-voltage double-sampled sigma-delta converters,” IEEE J. Solid-State Circuits, vol. 32, pp. 1907-1919, Dec. 1997.
    [37] M. G. Kim, G. Ahn, P. K. Hanumolu, S. H. Lee, S. H. Kim, S. B. you, J. W. Kim, G. C. Temes, and U. K. Moon, “A 0.9-V 92-dB double-sampled switched-RC delta sigma audio ADC,” IEEE J. Solid-State Circuits, vol. 43, pp. 1195-1206, May 2008.
    [38] T. Yamamoto, M. Kasahara, and T. Matsuura, “A 63mA 112/94 dB DR IF bandpass delta-sigma modulator with direct Feed-Forward Compensation and Double Sampling,” IEEE J. Solid-State Circuits, vol. 43, pp. 1783-1794, Aug. 2008.
    [39] P. Rombouts, J. Raman, and L. Weyten, “An approach to tackle quantization noise folding in double-sampling sigma-delta modulation A/D converters,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Processing, vol. 50, pp.157-163, Apr. 2003.
    [40] P. Rombouts, J. D. Maeyer, and L. Weyten, “Design of double-sampling sigma-delta modulation A/D converters with bilinear integrators,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 52, pp.715-722, Apr. 2005.
    [41] S. K. Gupta and V. Fong, “A 64-MHz clock-rage sigma-delta ADC with 88-dB SNDR and -105-dB IM3 Distortion at a 1.5-MHz signal frequency,” IEEE J. Solid-State Circuits, vol. 37, pp. 1653-1661, Dec. 2002.
    [42] K. Lee, J. Chae, and G. C. Temes, “Efficiency fully-floating double-sampling integrator for delta-sigma ADCs” in Proc. Int. Symp. Circuits and Syst., May 2008, pp. 1440-1443.
    [43] P. J. Hurst and W. J. McIntyre, “Double sampling in switched-capacitor delta-sigma A/D converters” in Proc. nt. Symp. Circuits and Syst., May 1990, pp. 902-905.
    [44] A. Marques, V. Peluso, M. Steyaert, and W. Sanden, “Optimal parameters for delta-sigma modulator topologies,” IEEE Trans. Circuits Syst. II, vol.46, pp.359-369, Apr. 1999.
    [45] L. R. Carley, “A noise-shaping coder topology for 15- bit converters,” IEEE J. Solid-State Circuits, vol. 24, pp. 267-273, Apr. 1989.
    [46] R. T. Baird and T. S. Frez, “Improved delta-sigma DAC linearity using data weighted averaging,” in Proc. Int. Symp. Circuits and Syst., May 1995, pp. 13-16.
    [47] R. T. Baird and T. S. fiez, “Linearity Enhancement of multibit delta sigma A/D and D/A converters using data weighted averaging,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Processing, vol. 42, pp.753-762, Dec. 1995.
    [48] I. Fujimori, L. Longo, A. Hairapetian, K. Seiyama, S. Kosic, C. Jun and S.L Chan, “A 90-dB SNR 2.5 MHz output-rate ADC using cascaded multibit delta-sigma modulator at 8x oversampling ratio,” IEEE J. Solid-State Circuits, vol. 35, pp. 1820-1828, Dec. 2000.
    [49] F. Chen and B. H. Leung, “A high resolution multibit sigma-delta modulator with individual level averaging,” IEEE J. Solid-State Circuits, vol. 30, pp. 453-460, Apr. 1995.
    [50] R. Schreier and B. Zhang, “Noise-shaped multibit D/A convertor employing unit elements,” IEE Electron. Lett., vol. 31, pp. 1712-1713, Sep. 1995.
    [51] M. Sarhang-Nejad and G. C. Temes, “A high-resolution multi-bit sigma-delta ADC with digital correction and relaxed amplifier requirements,” IEEE J. Solid-State Circuits, vol. 28, pp. 648-660, June 1993.
    [52] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and A. Baschirotto, “Behavioral modeling of switched-capacitor sigma-delta modulators,” IEEE Trans. Circuits Syst. I, Fundamental Theory and Applications, vol. 50, pp.352-364, Apr. 2003.
    [53] H. Zare-hoseini, I. Kale, and O. Shoaei, “Modeling of switched-capacitor delta-sigma modulators in SIMULINK,” IEEE Trans. Instrum. Meas., vol. 54, pp. 1646-1654, Aug. 2005.
    [54] G. Suarez, M. Jimenez, and F. O. Fernandez, “Behavioral modeling methods for switched-capacitor sigma-delta modulaotr,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 54, pp.1236-1244, June 2007.
    [55] J. C. Morizio, M. Hoe, T. Kocak, C. Geddie, C. Hughes, J. Perry, S. Madhavapeddi, M. H. Hood, G. Lynch, T, umamoto, T, Ouda, H, Noda, M. Ishiwaki, T. Miki, and M. Nakaya, “14-bit 2.2-MS/s sigma-delta ADC,” IEEE J. Solid-State Circuits, vol. 35, pp. 968-974, July 2000.
    [56] L. Yao, M. Steyaert, and W. Sansen, “A 0.8V 8uW CMOS OTA with 50dB gain and 1.2MHz GBW in18pF load,” in Proc. Eur. Solid-State Circuits Conf., Sep.2003, pp.297-300.
    [57] T. B. Cho, and P. R. Gray, “A 10-b 20-Msample/s 35 mW Pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 166-172, Mar 1995.
    [58] D. Haigh and B. singh, “A switching scheme for switched capacitor filters which reduces the effects of parasitic capacitances associated with switch control terminals,” in Proc. Int. Symp. Circuits and Syst., May 1983, pp. 586-589.
    [59] S. Rabii and B. A. Wooley, “A 1.8-V digital-audio Sigma-Delta modulator in 0.8-um CMOS,” IEEE J. Solid-State Circuits, vol. 32, pp. 783-796, June 1997.
    [60] J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, “A wideband low-distortion delta-sigma ADC topology,” Electron. Lett., vol. 37 , pp. 737-738, June 2001.
    [61] J. Silva, U. Moon, and G. C. Temes, “Low-distortion delta-sigma topologies for MASH architectures,” in Proc. Int. Symp. Circuits and Syst., May 2004, pp. 23-26.
    [62] W. Sansen, “Distortion in elementary transistor circuits,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Processing, vol. 46, pp.315-325, Dec. 1999.
    [63] K. Bult and G. Geelen “A fast-settling CMOS Op Amp for SC circuits with 90-dB DC gain,” IEEE J. Solid-State Circuits, vol. 25, pp. 1379-1384, June 1990.
    [64] B. Y. Kamath, R. G. Meyer, and P. R. Gray, “Relationship between frequency response and settling time of operational amplifier,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 347-352, June 1974.
    [65] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D Converter in 0.35-um CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1847-1858, Dec. 2001.
    [66] S. Rabii and B. A. Wooley, “A 1.8-V digital-audio sigma-delta modulator in 0.8-um CMOS,” IEEE J. Solid-State Circuits, vol. 35, pp. 318-325, Mar 2000.
    [67] I. Mehr and D. Dalton, “A 500-MSample/s, 6-bit Nyquist-rate ADC for disk-drive read-channel applications,” IEEE J. Solid-State Circuits, vol. 34, pp. 912-920, July 1999.
    [68] I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist–rate CMOS ADC,” IEEE J. Solid-State Circuits, vol. 32, pp. 783-796, Mar 1997.
    [69] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective. Boston: Pearson/Addison-Wesley, 2005.
    [70] S. Brigati, F. Francesconi, P. Malcovati, D. Tonietto, A. Baschirotto, and F. Maloberti, “Modeling and characterization of sigma-delta analog-to-digital converters,” in Proc. Int. Symp. Circuits and Syst., Vol. 2, pp. 384-387, 1999.
    [71] J. Ruiz-Amaya, J.M. Rosa, F. Medeiro, F. V. Fernandez, R. D. Rio, B. Perez-Verdu, and A. R. Vazquez, “MATLAB/SIMULINK-based high-level synthesis of discrete-time and continuous-time sigma-delta modulators,” in Proc. IEEE DATE, Jun. 2004.
    [72] P. J. Hurst and S. H. Lewis, “Determination of stability using return ratios in balanced fully differential feedback circuits,” IEEE Trans. Circuits Syst. II, Analog and Digital Signal Processing, vol. 42, pp.805-817, Dec. 1995.
    [73] B. Murmann, "ADC Performance Survey 1997-2008," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [74] A. Gharbiya and D. A. Johns, “Fully digital feedforward delta-sigma modulator,” IEEE PhD Research in Microelectron. and Electron., July 2005.

    下載圖示 校內:2012-07-24公開
    校外:2012-07-24公開
    QR CODE