簡易檢索 / 詳目顯示

研究生: 車佩怡
Che, Pei-Yi
論文名稱: 以農業廢棄物進行醱酵生產丁醇:菌種篩選、培養基最適化與醱酵策略開發
Fermentative biobutanol production from agricultural wastes: strain isolation, medium optimization and fermentation strategy development
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 123
中文關鍵詞: 生質丁醇發酵Clostridium反應區面法16S rDNA纖維素農業廢棄物
外文關鍵詞: Biobutanol fermentation, Clostridium, response surface methodology, 16S rDNA, cellulose, agricultural wastes
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以厭氧醱酵技術將木質纖維素料源轉化為生質丁醇。本研究使用之丁醇生產菌種乃由廢水污泥所馴化出之優勢菌群,經由變性梯度電泳分析與16S rDNA序列比對發現,該菌群中主要是四株厭氧菌,分別為Clostridium saccharoperbutylacetonicum, Clostridium butylicum, Clostridium sp., 與Clostridium acetobutylicum。本研究以葡萄糖濃度、FeSO4.7H2O濃度、和酵母萃取物濃度為主要變因,利用Box–Behnken法實驗設計和反應曲面法進行培養基最適化,以改善生質丁醇的生產效率。結果發現,在葡萄糖濃度為60 g/L、FeSO4.7H2O濃度為0.65g/L以及酵母萃取物濃度為5.13 g/L時,有最大的丁醇生產速率為3.03±0.18 mM/h。此外,由於丁酸為丁醇醱酵之前驅物,故本研究亦探討丁酸添加對於丁醇生產的影響。結果顯示,當添加丁酸濃度為6.0 g/L時可以大幅提升丁醇的生成,其產量可達約17.51±0.49 g/L。接著,本研究再利用產氣加壓迴流的醱酵策略,以提升氫分壓的方式抑制產氫,進而使得丁醇產量進一步提升到約21.31 g/L,產率為0.8 mol butanol/mol glucose,而生產速率達到16.92 mM/h,這些數據都優於相關之文獻報導。接著,本研究成功地將農業廢棄物(稻桿與蔗渣)轉化為生質丁醇;將蔗渣和稻桿經由氫氧化鈉前處理後,以自產纖維素分解酶進行纖維素酵素水解,在24小時內可以達到80%的水解效果並分別得到7.91±0.02和8.11±0.02 g/L的還原糖。以稻桿生產生質丁醇其丁醇產率(0.44±0.02 mol/mol reducing sugar)且產丁醇速率(84.16±1.93 mg/h)皆明顯高於蔗渣(丁醇產率為 0.32±0.02 mol/mol reducing sugar、丁醇速率為70.5±9.5 mg/h),顯示以本研究開發的技術,稻桿是較適合生產丁醇的料源。

    In this study, we utilized anaerobic fermentation to produce sustainable liquid biofuel (i.e., butanol) from renewable feedstock. An effective butanol-producing bacterial microflora was obtained from sewage sludge. Analysis with denaturing gradient gel electrophoresis (DGGE) followed by 16S rDNA sequence comparison, the major players in the bacterial microflora were identified as Clostridium saccharoperbutylacetonicum, Clostridium butylicum, Clostridium sp., and Clostridium acetobutylicum. Optimal medium composition for enhanced biobutanol production was obtained with the aid of Box–Behnken design and response surface methodology (RSM) using concentrations of glucose, FeSO4.7H2O and yeast extract as the key parameters. A maximum butanol production rate of 3.03±0.18 mM/h was obtained under the optimum condition of glucose concentration, 60 g/L; FeSO4.7H2O, 0.65 g/L; yeast extract concentration, 5.13 g/L. In addition, to improve butanol production efficiency, butyric acid was added to the fermentation broth as a precursor to improve the butanol production. The results show that addition of 6.0 g/L butyric acid significantly enhanced butanol production, leading to a final butanol concentration of 17.51±0.49 g/L. In addition, pressurized fermentation strategy was used in a 2 L fermentor to increase the partial pressure of hydrogen so that hydrogen generation was inhibited, thereby butanol production becomes metabolically favorable. Using the optimal dosage of butyric acid and pressurized fermentation strategy, the butanol production can reach up to 21.31 g/L culture with a yield of approximately 0.8 mol butanol/mol glucose and a maximum butanol production rate of 16.92 mM/h.
    Butanol was also successfully produced from enzymatically hydrolyzed bagasse and rice straw, which were pretreated with alkaline (sodium hydroxide). Using cocktail cellulases/xylanase enzymes produced from bacterial strains isolated from our laboratory, nearly 80% of pretreated bagasse and rice straw was converted to reducing sugar, giving reducing sugar production of 7.91±0.02 and 8.11±0.02 g/L within 24 h of enzymatic hydrolysis. The butanol yield (0.35±0.03 mol/mol reducing sugar) and butanol rate 84.16±1.93 mg/h from rice straw was higher than that (0.32±0.01 mol/mol reducing sugar and 70.5±9.5 mg/h) from bagasse. This indicates that using the technology developed in this study, rice straw was a more efficient feedstock for cellulosic biobutanol production.

    摘要 I Abstract III Acknowledgment V Contents VII List of Tables XI List of Figures XIII Chapter 1 Introduction 1 1.1 Motivation and purpose 1 1.2 The research scheme 3 Chapter 2 Literature review 5 2.1 Lignocellulose 5 2.2 Cellulase 10 2.3 Cellulose pretreatment 16 2.3.1 Physical pretreatment 17 2.3.1.1 Mechanical comminution 17 2.3.1.2 Pyrolysis 17 2.3.2 Physicochemical pretreatment 17 2.3.3 Chemical pretreatment 19 2.3.3.1 Acid hydrolysis 19 2.3.3.2 Ozonolysis 20 2.3.3.3 Alkaline hydrolysis 22 2.3.4 Biological pretreatment 24 2.4 Origin of butanol fermentation 27 2.4.1 Chemical Synthesis of Butanol 29 2.4.2 General Aspects of Biological Butanol Production 31 2.4.3 Advantage of biobutanol as a fuel 33 2.4.4 Biobutanol production from cellulose 35 2.5 Hydrogen production 37 2.5.1 Physiochemical hydrogen production 38 2.5.1.1 Thermo chemical method 38 2.5.2 Biological hydrogen production 39 2.5.3 Biological hydrogen production from cellulosic hydrolysate 42 Chapter 3 Materials and methods 44 3.1 Chemicals and Materials 44 3.2 Equipment 46 3.3 Bacterial strains and cultivation conditions 48 3.3.1 The cellulase-producing bacteria and culture conditions 48 3.3.2 Butanol-producing anaerobic bacteria and culture conditions 50 3.4 Analytical methods 51 3.4.1 Measurement of reducing sugar concentration 51 3.4.2 Measurement of gaseous products 52 3.4.3 Determination of soluble products by HPLC 53 3.4.4 Determination of the soluble products by GC 53 3.4.5 Enzyme assay 54 3.4.6 Analysis of time-course results by Gompertz equation 55 3.5 Experimental methods 58 3.5.1 Isolation of the bacterial strains and growth condition 58 3.5.2 16S rDNA sequencing and phylogenetic analysis 59 3.5.3 Screening of factors for ABE production 60 3.5.4 Pretreatment of lignocellulosic materials 61 3.5.5 Pressurized fermentation strategy 61 3.5.6 Butanol and hydrogen production from cellulose by separate hydrolysis and fermentation (SHF) 62 3.5.7 Butanol and hydrogen production from cellulose by simultaneous saccharification and fermentation (SSF) 62 3.5.8 Response surface methodology (RSM) 63 Chapter 4 High yield biobutanol production by solvent -producing bacterial microflora 65 4.1 Characterization of the butanol-producing isolates 65 4.2 Effect of glucose concentration on butanol production 67 4.3 Effect of temperature, inoculum size and rotation rate on butanol production 68 4.4 Analysis by response surface methodology (RSM) 71 4.5 Effect of butyrate addition on butanol production 73 4.6 Effect of fermentation strategy on butanol production 77 Chapter 5 Butanol production from cellulosic feedstock 84 5.1 Cellulase-producing microorganisms 84 5.2 Alkaline pretreatment of bagasse and rice straw 85 5.2.1 SEM analysis on the pretreated lignocellulosic feedstoc 85 5.2.2 Enzymatic hydrolysis of NaOH-pretreated bagasse and rice straw 87 5.3 ABE fermentation and bioH2 production from cellulosic feedstock 89 5.3.1 ABE and H2 fermentation from rice straw and bagasse with separate hydrolysis and fermentation (SHF) 89 5.3.2 ABE and H2 fermentation from bagasse and rice straw with simultaneous saccharification and fermentation (SSF) 97 Chapter 6 Conclusions 108 References 109 Appendix curriculum vitae 122

    Alejandro SH, Jesús VE, María del CH, María EL (2007) Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena. J. Ind. Microbiol. 34: 331-338
    Adsul MG, Ghule JE, Singh R, Shaikh H, Bastawde KB, Gokhale DV, Varma AJ (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr. Polym. 57: 62-72
    APHA, (1995) Standard Methods for the Examination of Water and Wastewater. . American Public Health Association, New York, USA.
    Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonca R, Baeza J (2007) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb. Tech. 43: 214-219
    Bachmann SL, Mccarthy AJ (1991) Purification and co-operative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl. Environ. Microbiol . 57: 2121–2130
    Bahl H, Gottwald M, Kuhn A, Rale A, Andersch W, Gottschalk G (1986) Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl. Environ. Microbiol. 52: 169-172
    Bauchop T (1981) The anaerobic fungi in rumen fibre digestion. Agric. Environ. 6: 339-348
    Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl. Microbiol Biotechnol. 56: 326-338
    Béguin P, Aubert JP (1993) The biological degradation of cellulose. FEMS Microbiol. Rev. 23: 25-58
    Beguin P, Cornet P, Anbert JP (1985) Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162: 102-105
    Beily P (1993) Biochemical aspects of the production of microbial hemicellulose. In: Coughlan MP, Hazlewood GP(eds) Hemicellulose and hemicellulases. Portland Press, London, 29-51
    Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15: 583-620
    Bochman M, Cotton FA, Murillo CA, Wilkinson G (1999) Advanced inorganic chemistry. USA: John Wiley & Sons, Inc.
    Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. Ser . 13: 1-45
    Cara C, Moya M, Ballesteros I, Negro MJ, Gonzalez A, Ruiz E (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem. 42:1003-1009.
    Carlile MJ, Sarah C (1994) Watkinson. The Fungi. Academic Press. ISBN 0-12-159959-0
    Cellulose strands (2007). http://en.wikipedia.org/wiki/Cellulose
    Chabannes M (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J. 28: 271-282
    Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84-86, 5-37.
    Chen CY, Chang JS (2006) Feasibility strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. Int. J. Hydrogen Energy. 31 : 2345-2355
    Chen M, Zhao J, Xia L (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers. 71: 411-415
    Chen SD, Sheu DS, Chen WM, Lo YC, Huang TY, Lin CY, Chang JS, (2008) Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol. Prog. 23: 1312-1320
    Coughlan MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genetic Eng Rev. 3: 39-109
    Crawford RL, (1981) Lignin biodegradation and transformation. New York, John Wiley and Sons. ISBN 0-471-05743-6.
    Curreli N, Fadda MB, Rescigno A, Rinaldi AC, Soddu G, Sollai F, Vaccargiu S, Sanjust E, Rinaldi A (1997) Mild alkaline/oxidative pretreatment of wheat straw. Process Biochem. 32: 665-670
    Dale BE, Moreira MJ (1982) A freeze explosion technique for increasing cellulose hydrolysis. Biotechnol. Bioeng. 12:31-43
    Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM (1996) hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour.Technol . 56: 111–116
    Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26: 13-28
    Datar R, Huang J, Maness PC, Mohagheghi A (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrogen Energy 32: 932-939
    Desai RP, Nielsen LK, Papoutsakis ET (1999) Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J. Biotechnol. 71: 191–205
    Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: A new model derived from direct visualization. J. Agric. Food. Chem. 54: 597-606
    Donaldson GK, Huang LL, Maggio-Hall LA, Nagarajan V, Nakamura CE, Suh W (2007) Fermentative production of four carbon alcohols. International Patent WO2007/041269
    Falbe J (1970) Carbon monoxide in organic synthesis. Berlin-Heidelberg- New York: Springer Verlag.
    Filho EXF, Touhy MG, Puls J, Coughlan MP (1991) The xylan-degrading enzyme systems of Penicillium capsulatum and Talaromyces emersonii. Biochem. Soc. Trans. 19:25S.
    Gabriel CL (1928) Butanol fermentation process. Ind. Eng. Chem. 20:1063-1067
    Gheshlaghi R, Scharer JM, Young MM, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol. Adv. 27: 764-781
    Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187- 194
    Ginkel SV, Sung S, Lay JJ (2001) Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730
    Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC824. Appl. Biochem. Biotechnol. 57-58:213-221
    Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of
    Clostridium acerobutylicurn with an inactivated solR gene. J. Ind. Microbiol. Biotechnol. 27:322-328
    Heinzel A, Vogel P, Hübner P (2002) Reforming of natural gas - hydrogen generation for small scale stationary fuel cell systems. J. Power Sources 150: 202-207
    Ho NWY, Chen ZD, Brainard A (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852-1859
    Holt RA, Cairns AJ, Morris JC (1988) Production of butanol by Clostridium puniceum in batch and continuous culture. Appl. Microbiol. Biotechnol. 27: 319-324
    Holt RA, Stephens GM, Morris G (1984) Production of Solvents by Clostridium acetobutylicum cultures maintained at neutral pH. Appl. Environ. Microbiol. 48:1166-1170
    Hooper RJ, Li J (1996) Summary of the factors critical to the commercial application of bioenergy technologies. Biomass Bioenergy 11: 469-474
    Hutson NJ, Kerbey AL, Randle PJ, Sugden PH (1979) Regulation of pyruvate dehydrogenase by insulin action. Prog. Clin. Biol. Res. 31: 707-19
    Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J. Biotechnol. 103: 273-280
    Javed MM, Khan TS, Haq I (2007) Sugar cane bagasse pretreatment: anattempt to enhance the production potential of cellulases by humicola insolens TAS-13. Elec. J. Environ. Agricult. Food Chem. 6: 2290-2296
    Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbio. Rev. 50: 484-524
    Juanbaro J, Puigjaner L (1985) Saccharification of concentrated brewing bagasse slurries with dilute sulfuric acid for producing acetone-butano1 by Clostridium acetobutylicum. Biotechnol. Bioeng. 28: 1544-1554
    Kargi F, Kapdan IK (2005) Biohydrogen production from waste materials. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005.
    Kasap M (2002) Nitrogen metabolism and solvent production in Clostridium beijerinckii NRRL B593. Doctor of philosophy in biochemistry
    Katzen R, Madson PW, Monceaux DA (1995) Use of cellulosic feedstocks for alcohol production. In The Alcohols Textbook; Lyons, T.P., Murtagh, J.E., Kelsall, D.R., Eds.; Nothingham University Press. 37-46
    Killeffer DH (1927) Butanol and acetone from corn. A description of the fermentation process. Ind. Eng. Chem. 19: 46-50
    Kirschner M. (2006). n-Butanol. Chemical Market Reporter January 30–February 5, ABI/INFORM Global, p42
    Kulkarni N, Shendye A, Rao M (2003) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729
    Kurakake M, Ide N, Komaki T (2007) Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr. Microbiol. 54: 424-428
    Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative Butanol Production by Clostridia. Biotechnol. Bioeng. 101: 209-228
    Lin CY, Lay CH (2004) Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy 29: 275-281
    Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 37:496-501
    Lo YC, Huang CY, Fu TN, Chen CY, Chang JS (2009) Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate. Int. J. Hydrogen Energy 34: 6189-6200
    Mandels M (1985) Applications of cellulases. Biochem. Soc. Trans. 13: 414-415
    Marchal R, Rebeller M, Vandecasteele JP (1984) Direct bioconversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone butanol production. Biotechnol. Lett. 6: 523-528
    Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN (1993) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme-activities using a synthetic acetone operon. Biotechnol. Bioeng. 42:1053-1060
    Michael TM, John MM, Jack P (1998) Brock biology of microorganisms. Prentice Hall Upper Saddle River, NJ 07458
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428
    Monot F, Martin JR,Petitdemange H, Gay R (1982) Acetone and butanol production by Clostridium acetobutyicum in synthetic medium. Appl. Environ. Microbiol. 44: 1328-1324
    Moxley G, Zhu Z, Percival Zhang YH (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J. Agric. Food Chem. 56: 7885-7890
    Mu Y, Yu HQ, Wang G (2007) A kinetic approach to anaerobic hydrogen-producing process. Water Res 41: 1152-1160
    Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J. Bacteriol. 176:871-885
    Nguyen BNT, Leclerc CA (2008) Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen. Int. J. Hydrogen Energy 33: 1295-1303
    Nitisinprasert S, Temmes A (1991) The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CMC126 isolated from municipal sewage sludge. J. Appl. Bacteriol. 71:
    154-161
    OPEC, Organization of the Petroleum Exporting Countries, website: http://www.opec.org, 2008.
    Orts WJ, Holtman KM, Seiber JN (2008) Agricultural Chemistry and Bioenergy. J. Agric. Food Chem. 56: 3892-3899
    Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol. Bioeng. 94: 851-861
    Papatheofanous MG, Billa E, Koullas DP, Monties B, Koukios EG (1995) Two-stage acidcatalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour. Technol. 54: 305-310
    Qureshi N, Saha BC, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II—Fed-batch fermentation. Biomass Bioenergy 32: 176-183
    Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—Batch fermentation. Biomass Bioenergy 32: 168-175
    Reese ET, Gilligan W (1954) The swelling factor in cellulose hydrolysis. Textile Res J. 24: 663-669
    Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454: 841-845
    Rubinow SI (2002) Introduction to mathematical biology. A wiley-interscience. 42
    Saha BC (2004) Lignocellulose Biodegradation and Applications inBiotechnology. ACS Symposium Series; American Chemical Society: Washington, DC
    Saha B, Bothast R (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl. Biochem. Biotechnol. 76:65-76.
    Selby K, Maitland CC (1967) The cellulase of Trichoderma viride. Separation of the components involved in the solubilization of cotton. Biochem. J 104: 716-724
    Shah MM, Lee YY (1992) Simultaneous saccharification and extractive fermentation for acetone/butanol production from pretreated hardwood. Appl. Biochem. Biotechnol. 34: 557-568
    Silverstein RA, Chen Y, Shivappa RRS, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98: 3000-3011
    Soni BK, Das K, Ghose TK (1982) Bioconversion of agro-wastes into acetone butanol. Biotechnol. Lett 4: 19-22
    Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1–11
    Sun YNZ (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl. Microbiol. Biotechnol. 83: 415-423
    Sun JX, Xu F, Sun XF, Xiao B, Sun RC (2004) Physico-chemical and thermal characterization of cellulose from barley straw. Polym. Degrad. Stab. 88: 521-531
    Taherzadeh MJ, Karimi K (2008) Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 9: 1621-1651
    Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng. 100: 637-43
    Taguchi F, Yamada K, Hasegawa K, Taki-Saito T, Hara K (1996) Continuous hydrogen production by Clostridium sp. strain No. 2 from cellulose hydrolysate in an aqueous two-phase system. J. Ferment. Bioeng. 82: 80-83
    Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 98: 263-268
    Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl. Environ. Microbiol. 69:4951-4965
    Tummala SB, Junne SG, Papoutsakis ET (2003) Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J. Bacteriol. 185:3644-3653
    Vlasenko EY, Ding H, Labavitch JM, Shoemaker SP (1997) Enzymatic hydrolysis of pretreated rice straw. Bioresour. Technol. 59: 109-119
    Walter C, Frieden E (1963) The prevalence and significance of the product inhibition of enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 25: 167-274
    Wood TM, Bhat MK (1988) Methods for measuring cellulase activities. Methods Enzymol. 160: 87-112
    Wu JF (2006) Biohydrogen production using starch as the carbon substrate. Master thesis. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
    Wynkoop R (1943) n-Butanol and Acetone. Ind. Eng. Chem. 12: 1240-1242
    Zhu Y, Liu X, Yang ST (2005) Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnol. Bioeng. 90: 154-166
    Zeikus JG (1986) Chemical and fuel production by anaerobic bacteria. Ann. Rev. Microbiol. 34: 423-64
    Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97: 214-223
    Zhang YHP, Lynd LR (2003) Quantification of cell and cellulose mass concentrations during anaerobic cellulose fermentation: Development of an ELISA-based method with application to Clostridium thermocellum batch cultures. Anal. Chem. 75: 219-227
    Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol. 71:587–597.
    Zwietering M., Jongenburger I, Rimbouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56: 1857-1881

    無法下載圖示 校內:2020-07-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE