簡易檢索 / 詳目顯示

研究生: 簡伸翰
Jian, Shen-Han
論文名稱: 應用於電動滑板車之輪轂式游標永磁馬達設計與實現
Design and Implementation of Vernier In-wheel PM Motor for the Application of Electric scooters
指導教授: 蔡明祺
Tsai, Mi-Ching
共同指導教授: 黃柏維
Huang, Po-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 永磁游標馬達電動滑板車功率因數漏磁係數導磁端蓋
外文關鍵詞: permanent magnet vernier motor, electric scooter, power factor, leakage factor, magnetic end cap
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輕型電動載具的普及有利於城市間短程交通的需求,相較於燃油引擎更能有效降低溫室氣體的排放量。近年來,以輕巧便攜為特色的電動滑板車逐漸受到世人關注;作為代步工具,車體輕量化以及續航力的提升是至關重要的部分。市售電動滑板車多數採用輪轂式永磁無刷馬達作為動力源,其重量功率密度有一定的上限,而永磁游標馬達以結構簡單且具有「齒輪比」的特性,可進一步提升馬達的性能。
    本研究針對永磁游標馬達低功率因數的原因「磁極間緊密排列的漏磁現象」進行討論,以一個關鍵係數描述漏磁的影響,透過設計漏磁係數改善功率因數,最後歸納出一個適合的設計方案。在實驗結果中顯示,相較於市售馬達,本研究提出的一般型永磁游標馬達設計在反電動勢常數與轉矩常數分別提升27.72 %和41.39 %。
    在一般型永磁游標馬達的設計流程中,端部繞組會因為整體槽數減少而增高,本研究針對此問題進而提出由3D金屬粉末列印製成的導磁端蓋合併矽鋼片的「混合式定子」設計,達到內收部分端部繞組的效益。與市售馬達相比,最終提升24.58 %的重量功率密度。

    The popularity of light electric vehicles is conducive to the demand for short-distance transportation between cities, and can effectively reduce greenhouse gas emissions compared to fuel engines. In recent years, electric scooters featuring light weight and portability have gradually attracted the attention of the world; as a means of transportation, the lightweight of the car body and the improvement of endurance are crucial parts. Most commercial electric scooters use permanent magnet brushless in-wheel motors as power sources, and their weight power density has an upper limit. Permanent magnet vernier motors (PMVM) compared to the former ones have simpler structure and “gear ratio” characteristics, which can further improve the performance of the motor.
    This research uses a key parameter called “leakage factor” to describe the range of flux leakage between magnetic poles closely arranged which leads to the problem of low power factor. By designing the leakage factor to improve the power factor, and finally conclude a suitable result. The experimental results show that the general PMVM proposed in this paper has increased the back-EMF constant and torque constant by 27.72 % and 41.39 % than the benchmark.
    In the general PMVM design flow, the end winding will increase due to the reduction of the overall number of slots. To improve the above phenomenon, this research proposes a “hybrid-stator” combined with 2D steel sheets lamination and 3D printing magnetic end cap (MEC) to achieve the benefit of reducing partial end winding. Lastly, the new hybrid-stator PMVM’s weight power density gets 24.58 % higher than the benchmark.

    中文摘要 I Abstract II 誌謝 XIV 目錄 XXI 表目錄 XXIV 圖目錄 XXV 符號表 XXVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.1.1 電動載具趨勢 1 1.1.2 輪轂馬達 3 1.2 文獻回顧 5 1.3 研究目的 10 1.4 論文章節概要 11 第二章 永磁游標馬達常見結構與運作原理 13 2.1 常見結構與特徵[6] 13 2.1.1 轉子磁鐵型 13 2.1.2 定子磁鐵型 14 2.1.3 全磁鐵型 15 2.2 運作原理與特性[6] 16 2.2.1 磁性齒輪效應 16 2.2.2 轉矩方程式 18 2.2.3 反電動勢方程式 23 第三章 永磁游標馬達設計流程 25 3.1 電機規格 25 3.1.1 負載分析 25 3.1.2 源電機與衍生電機[38] 31 3.1.3 磁裝載與電裝載 34 3.2 空間諧波分析 36 3.3 電磁場特性 40 3.3.1 無載特性 41 3.3.2 齒輪比特性驗證 43 3.3.3 額定負載特性曲線 45 第四章 新型混合式定子永磁游標馬達 51 4.1 導磁端蓋 52 4.1.1 鐵矽鉻合金粉末磁特性 52 4.1.2 構型與材料 53 4.2 電磁場特性 55 4.2.1 無載特性 55 4.2.2 額定負載特性曲線 56 第五章 模擬與實測結果比較 59 5.1 實驗平台規劃 59 5.1.1 馬達結構 59 5.1.2 測試平台 60 5.2 模擬與實驗成果分析 61 5.2.1 無載特性量測 61 5.2.2 負載特性量測 62 5.3 綜合討論 65 第六章 結論與未來發展 66 6.1 結論 66 6.2 未來發展 67 參考文獻 68

    [1] M. Masoud, M. Elhenawy, M. H. Almannaa, S. Q. Liu, S. Glaser and A. Rakotonirainy, "Heuristic Approaches to Solve E-Scooter Assignment Problem," in IEEE Access, vol. 7, pp. 175093-175105, 2019.
    [2] M. Barth and K. Boriboonsomsin, "Real-world carbon dioxide impacts of traffic congestion," Transportation Research Record, vol. 2058, no. 1, pp. 163–171, 2008.
    [3] M. K. Nematchoua, C. Deuse, M. Cools, and S. Reiter, "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Belgium," Renew. Sustain. Energy Rev., vol. 119, pp. 1–14, Dec. 2020.
    [4] W. Ackaah, "Exploring the use of advanced traffic information system to manage traffic congestion in developing countries," Sci. Afr., vol. 4, pp. 1–7, Dec. 2019.
    [5] M. Masoud, M. Elhenawy, M. H. Almannaa, S. Q. Liu, S. Glaser, and A. Rakotonirainy, "Heuristic approaches to solve E-scooter assignment problem," IEEE Access, vol. 7, pp. 175093–175105, 2019.
    [6] Chau, K. T. Electric vehicle machines and drives: design, analysis and application. John Wiley & Sons, 2015.
    [7] Soar Boards. (2015). Zero G Hands Free Segway. Retrieved from https://www.flickr.com/photos/136833700@N04/21403154443/in/photostream/ (Oct 6, 2020)
    [8] Unagi, The model one. (2020). Retrieved from https://www.unagiscooters.com/products/the-scooter?variant=16420836769907 (Oct 6, 2020)
    [9] P. DeMaio, "Bike-sharing: History, impacts, models of provision, and future," J. Public Transp., vol. 12, no. 4, p. 3, 2009.
    [10] E. Howe and B. Bock, "Global scootersharing market report 2018," InnoZInnov. Centre Mobility Societal Change, Tech. Rep., 2018.
    [11] National Association of City Transportation Officials (NACTO), Shared Micromobility in the U.S.: 2019. (2019). Retrieved from https://nacto.org/shared-micromobility-2019/ (Oct 10, 2020)
    [12] Amazon, Unagi Unisex’s Model One E500. (2021). Retrieved from https://reurl.cc/eEk5QQ (Jul 3, 2021)
    [13] Amazon, Ninebot Segway, ES4 E-scooter Rental Edition Adult 2 Wheel Non Foldable Powered Kick Scooter, Black (Model: SNSC1.1). (2021). Retrieved from https://reurl.cc/MAz7eX (Jul 3, 2021)
    [14] Amazon, Aovo Pro M365 Electric Scooter. (2021). Retrieved from https://reurl.cc/rgYlmN (Jul 3, 2021)
    [15] J. R. Hendershot and T. J. E. Miller, Design of Brushless Permanent-Magnet Motors, Oxford University Press, 1995.
    [16] C. H. Lee, "Vernier Motor and Its Design," in IEEE Transactions on Power Apparatus and Systems, vol. 82, no. 66, pp. 343-349, June 1963.
    [17] A. Ishizaki, T. Tanaka, K. Takasaki and S. Nishikata, "Theory and optimum design of PM Vernier motor," 1995 Seventh International Conference on Electrical Machines and Drives (Conf. Publ. No. 412), Durham, UK, 1995, pp. 208-212.
    [18] A. Toba and T. A. Lipo, "Novel dual-excitation permanent magnet Vernier machine," Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), Phoenix, AZ, USA, 1999, pp. 2539-2544 vol.4.
    [19] A. Toba and T. A. Lipo, "Generic torque-maximizing design methodology of surface permanent-magnet vernier machine," in IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1539-1546, Nov.-Dec. 2000.
    [20] Y. Yu, Y. Pei, L. Chen, F. Chai and G. Han, "Design and Comparative Analysis of Consequent Pole Rotor Configurations in PM Vernier Motors for In-wheel Drive Application," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-6.
    [21] B. Kim, "Design Method of a Direct-Drive Permanent Magnet Vernier Generator for a Wind Turbine System," in IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4665-4675, Sept.-Oct. 2019.
    [22] L. Shentu, Y. Ma, J. Wang, J. Zhou, L. Zhou and K. Qian, "Design and Analysis of a Direct-Drive Permanent Magnet Vernier Motor for Electric Drilling Applications," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, 2018, pp. 81-86.
    [23] F. Zhao, M. Kim, B. Kwon and J. Baek, "A Small Axial-Flux Vernier Machine With Ring-Type Magnets for the Auto-Focusing Lens Drive System," in IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, July 2016.
    [24] S. Gerber and R. Wang, "Design and evaluation of a PM vernier machine," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 5188-5194.
    [25] E. Spooner and L. Haydock, "Vernier hybrid machines," in IEEE Proceedings - Electric Power Applications, vol. 150, no. 6, pp. 655-662, 7 Nov. 2003.
    [26] D. Li, R. Qu and T. Lipo, "High power factor vernier permanent magnet machines," 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 1534-1540.
    [27] D. Li, R. Qu and Z. Zhu, "Comparison of Halbach and Dual-Side Vernier Permanent Magnet Machines," in IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 801-804, Feb. 2014.
    [28] W. Li, T. W. Ching and K. T. Chau, "A Hybrid-Excited Vernier Permanent Magnet Machine Using Homopolar Topology," in IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-7, Nov. 2017.
    [29] D. Li, T. Zou, R. Qu and D. Jiang, "Analysis of Fractional-Slot Concentrated Winding PM Vernier Machines With Regular Open-Slot Stators," in IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1320-1330, March-April 2018.
    [30] K. Xie, D. Li, R. Qu and Y. Gao, "A Novel Permanent Magnet Vernier Machine With Halbach Array Magnets in Stator Slot Opening," in IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-5, June 2017.
    [31] D. Cao, W. Zhao, J. Ji, L. Ding and J. Zheng, "A Generalized Equivalent Magnetic Network Modeling Method for Vehicular Dual-Permanent-Magnet Vernier Machines," in IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 1950-1962, Dec. 2019.
    [32] L. Xu, W. Zhao, G. Liu, J. Ji and S. Niu, "A Novel Dual-Permanent-Magnet-Excited Machine With Non-Uniformly Distributed Permanent-Magnets and Flux Modulation Poles on the Stator," in IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7104-7115, July 2020.
    [33] Y. Kataoka, M. Takayama, Y. Matsushima and Y. Anazawa, "Comparison of three magnet array-type rotors in surface permanent magnet-type vernier motor," 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, 2012, pp. 1-6.
    [34] B. Kim and T. A. Lipo, "Operation and Design Principles of a PM Vernier Motor," in IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3656-3663, Nov.-Dec. 2014.
    [35] D. K. Kana Padinharu et al., "Scaling Effect on Electromagnetic Performance of Surface-Mounted Permanent-Magnet Vernier Machine," in IEEE Transactions on Magnetics, vol. 56, no. 5, pp. 1-15, May 2020.
    [36] Martin, James C., et al. "Validation of a mathematical model for road cycling power." Journal of applied biomechanics 14.3 (1998): 276-291.
    [37] Electric Scooter Guide, Unagi Model One Review: Lightweight Scooter is Straight Out of the Future. (Nov 26, 2019). Retrieved from https://electric-scooter.guide/reviews/unagi-model-one-review/ (Jun 16, 2021)
    [38] 張洋、黃明明,「新型永磁游標電機設計與分析」,黃河水利出版社,民國107年。
    [39] 簡伸翰,「永磁游標馬達之齒輪比特性模擬驗證」,馬達電子報,成大馬達科技研究中心,第923期,2020。
    [40] Hanselman, Duane C. Brushless permanent magnet motor design. The Writers' Collective, 2003.
    [41] ARNOLD MAGNETIC TECHNOLOGIES, Sintered Neodymium-Iron-Boron Magnets N42SH. (2017). Retrieved from https://www.arnoldmagnetics.com/wp-content/uploads/2017/11/N42SH-151021.pdf (Jun 19, 2021)
    [42] D. Sharon, "Power factor definitions and power transfer quality in nonsinusoidal situations," in IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 3, pp. 728-733, June 1996.
    [43] I. Niyonzima, R. V. Sabariego, P. Dular and C. Geuzaine, "Nonlinear Computational Homogenization Method for the Evaluation of Eddy Currents in Soft Magnetic Composites," in IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 61-64, Feb 2014.
    [44] Yang, Y., Wang, Y., Wu, S., Liu, C., & Chen, L. "Core loss analysis of soft magnetic composites considering the inter-particle eddy current loss." AIP Advances, Nov 2021.

    無法下載圖示 校內:2026-10-04公開
    校外:2026-10-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE