| 研究生: |
林岑曄 Lin, Tsen-Yeh |
|---|---|
| 論文名稱: |
雙光子神經顯微影像之三維形態資訊擷取 3D Morphological Information Acquisition of Two-photon Microscopic Neuronal Images |
| 指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 形態量化 、雙光子神經顯微影像 、區域成長演算法 |
| 外文關鍵詞: | Morphological quantification, Two-photon microscopic neuronal images, Region-growing |
| 相關次數: | 點閱:143 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了協助神經學家觀察神經系統的運作機制,量化單一神經元之細胞形態資訊是必需的,然而市面上所流通的商用套裝軟體不易改良成具有特定功能需求的,這將可能造成使用者操作上的不便以及提升了軟體的操作複雜度,因此本研究實現了一個自動化的三維形態資訊擷取軟體以量化雙光子神經顯微影像之細胞形態資訊。本論文修改了區域成長演算法以實現ROI影像分割及神經顯微影像之細胞形態量化功能並且驗證之,使用這套程式軟體可以幫助使用者獲取量化的神經細胞形態資訊,例如神經本體的體積、神經細胞的分支數目以及神經細胞的分支長度,雖然實驗結果還需要再做進一步的驗證,但是所有的神經細胞顯微影像皆可在相同規則條件下量化,這將可以提供相對量化答案給使用者作分析。藉由使用這套系統軟體,量化神經細胞形態資訊所產生的耗時問題及可靠性問題皆可得到改善。
There is a need to extract neuronal morphological information of individual neuron to assist neuroscientists for understanding the mechanism of neuronal physiology. However, almost all commercially available software packages are not easy to be modified for some specific application and may possibly make the operation complicated. Thus, an automated three-dimensional morphological information extraction software is developed in this study to quantify two-photon microscopic neuronal images. In this study, a modified region-growing method for segmenting the ROI and quantifying the morphological information of individual neuron is developed and demonstrated. With the help of proposed system, the morphological information such as the volume of soma, the number of branching, and the length of branching can be obtained for quantitative analysis. Although further validation needs to be done, the relative quantification of neuronal morphological information may be good for reference. The problems of time-consuming and reliability in neuronal image analysis may be such alleviated.
[1] Medical Pictures Info [Online]. Available: http://medicalpicturesinfo.com
[2] I. B. Levitan and L. K. Kaczmarek, The Neuron: Cell and Molecular Biology, 3rd ed., New York: Oxford University Press, 2002.
[3] C. Levinthal and R. Ware, “Three dimensional reconstruction from serial sections,” Nature, vol. 236, pp. 207-211, 1972.
[4] P. Rakic, L. J. Stensas, E. P. Sayre, and R. L. Sidman, “Computer-aided three dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain,” Nature, vol. 250, pp. 31-34, 1974.
[5] C. Barillot, B. Gibaud, J. Scarabin, and J. Coatreux, “3D reconstruction of cerebral blood vessels,” IEEE Computer Graphics and Applications, vol. 5, pp. 13-19, 1985.
[6] J. K. Udupa and D. Odhner, “Shell rendering,” IEEE Computer Graphics and Applications, vol. 13, pp. 58-67, 1993.
[7] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3-D surface construction algorithm,” Computer Graphics, vol. 21, pp. 163-169, 1987.
[8] J. -D. Boissonnat and B. Geiger, “Three dimensional reconstruction of complex shapes based on the Delauney triangulation,” Tech. Rep. 1697, INRIA Rapports de Recherche-Sophia Antipolis, 1992.
[9] P. V. Belichenko and A. Dahlström, “Confocal laser scanning microscopy and 3D reconstruction of neuronal structures in human brain cortex,” NeuroImage, vol. 2, pp. 201-207, 1995.
[10] J. H. Macke, N. Maack, R. Gupta, W. Denk, B. Scholkopf, and A. Borst, “Contour-propagation algorithms for semi-automated reconstruction of neural processes,” Journal of Neuroscience Methods, vol. 167, pp. 349-357, 2008.
[11] T. K. S. Leung, J. H. Veldhuis, S. F. Gabby Krens, C. P. Heisenberg, and G. W. Brodland, “Identifying same-cell contours in image stacks: a key step in making 3D reconstructions,” Annals of Biomedical Engineering, vol. 39, pp. 698-705, 2010.
[12] T. Zhao and et al., “Automated reconstruction of neuronal morphology based on local geometrical and global structural models,” Neuroinformatics, vol. 9, pp. 247-261, 2011.
[13] S. Chen, M. Zhao, G. Wu, C. Yao, and J. Zhang, “Recent advances in morphological cell image analysis,” Computational and Mathematical Methods in Medicine, vol. 2012, pp. 1-10, 2012.
[14] B. P. Burton, Automated 3D Reconstruction of Neuronal Structures from Serial Sections, Master Thesis, Department of Computer Science, Texas A&M University, 1999.
[15] D. E. Donohue and G. A. Ascoli, “Automated reconstruction of neuronal morphology: an overview,” Brain Research Reviews, vol. 67, pp. 94-102, 2011.
[16] H. Lütcke and F. Helmchen, “Two-photon imaging and analysis of neural network dynamics,” Reports on Progress in Physics, vol. 74, pp. 086602, 2011.
[17] H. T. Chu, Impedimetric and Morphological Characterization of In-vitro 3D Neuronal Network, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, 2011.
[18] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Upper Saddle River, NJ, USA: Pearson Education, Inc., 2009.
[19] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979.
[20] A. P. Dhawan, Medical Image Analysis, 2nd ed., Hoboken, New Jersey: Wiley, John & Sons, Inc., 2011.
[21] C. H. Huang, Segmentation and Registration to Visualize the 3D Image Data of a Head, Master Thesis, Department of Biomedical Engineering, I-Shou University, 2006.
[22] Y. R. Chiou, Automatic Volume Quantification Method for ACM Image Segmentation Technique, Master Thesis, Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, 2006.
[23] C. P. Botha and F. H. Post, “ShellSplatting: interactive rendering of anisotropic volume,” Proceeding of the 5th Joint EUROGRAPHICS-IEEE TCVG Symposium on Visualization, pp. 105-113, 2003.
[24] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understanding, vol. 68, pp. 146-157, 1997.
[25] A. Witten, “A MATLAB-based three-dimensional viewer,” Computers & Geosciences, vol. 30, pp. 693-703, 2004.
校內:2018-08-27公開