| 研究生: |
許礎峰 Hsu, Chu-Feng |
|---|---|
| 論文名稱: |
應用於IEEE 802.11a/b/g雙頻帶操作之寄生元件印刷單極天線 Printed Monopole Antennas with Parasitic Elements for IEEE 802.11a/b/g Dual-Band Application |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 寄生元件 、單極天線 |
| 外文關鍵詞: | Parasitic Elements, Monopole Antennas |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於IEEE 802.11a/b/g(2.4-2.484 GHz 與5.15-5.35 GHz) 與ISM(5.75-5.825 GHz)分別在2.4GHZ與5GHz的兩個頻帶已經普及化了,所以使得雙頻印刷單極天線受到更多的重視,但因印刷單極天線本身具有窄頻寬的問題,為了解決此一問題,故在本論文裡提出了具有寄生元件的平面雙頻單極天線,且有增加頻寬操作的能力,由這個單極天線的結構中,提供了兩個不同的共振模態,其中較長的輻射金屬片控制較低頻的共振頻率,而較短的輻射金屬片控制了較高頻的共振頻率,寄生元件則貢獻在5.2GHz的模態中,此平面單極天線是以50Ω微帶線以印刷的方式由基板的中心饋入。以FR4為基板的天線提供兩個相異的阻抗頻寬,分別是低頻段的390 MHz與高頻段的1370 MHz,天線低頻增益為3.96-5.5dBi與高頻增益為0.89-3.38dBi;而氧化鋁基板天線的低頻頻寬為480MHz,而高頻頻寬為1170 MHz,天線低頻增益為1.22-1.31dBi與高頻增益為1.48-1.71dBi,且均保持在能夠覆蓋IEEE 802.11a/b/g與ISM。
Due to the widespread popularity of IEEE 802.11a/b/g (2.4-2.484 GHz and 5.15-5.35 GHz) and ISM(5.75-5.825 GHz) in both the 2.4GHz and 5GHz bands, dual-band printed monopole antennas have received more and more attention. Printed monopole antennas have the disadvantages of narrow antenna bandwidth. In order to cope with the problem of the narrow bandwidth of printed monopole antenna. In this paper, a planar dual-band monopole antenna with a parasitic element and capable of broad-band operation is proposed. The two resonant modes of the proposed antenna are associated with various length of the monopoles, in which a longer strip controls the lower resonant frequency and a shorter strip controls the higher resonant frequency. The parasitic element contributes to the resonant modes 5.2 GHz. The 50Ω microstrip line is used to feed the planar monopole antenna, and is printed on the same substrate. The antenna of FR4 substrate can provide two separate impedance bandwidths of 390 MHz (about 15.9% centred at 2.45 GHz) and 1370 MHz (about 26% centred at 5.2GHz). The antenna gains on FR4 are 3.96-5.5 and o.89-3.38 dBi for 2.4 and 5.2 GHz bands, respectively. On Al2O3 substrate in the 2.4 GHz band, the 10 dB bandwidth is about 480 MHz. In the 5.2 GHz band, the 10 dB bandwidth is about 1170 MHz. The antenna gains on Al2O3 are 1.22-1.31 and 1.48-1.71 dBi for 2.4 and 5.25GHz bands, respectively. Making it easily cover the required bandwidths for IEEE 802.11a/b/g and ISM. Details of the proposed antenna design and experimental results are presented and discussed.
[1] S. A. Long and M. D. Walton, "A Dud-Frequency Stacked Circular-Disc Antenna," IEEE Trans. Antennas Propagat., vol. 27, pp. 270-273, 1979.
[2] J. Dahele, K. Lee, and D. Wong, "Dual-Frequency Stacked Annular-Ring Microstrip Antenna," IEEE Trans. Antennas Propagat., vol. 35, pp. 1281-1285, 1987.
[3] F. Croq and D. M. Pozar, "Multifrequency operation of microstrip antennas using aperture-coupled parallel resonators," IEEE Trans. Antennas Propagat., vol. 40, pp. 1367 - 1374, 1992.
[4] K.-L. Wong and C.-M. Chang, "Experimental study of a two-element dual-frequency microstrip array," Microwave Opt. Technol. Lett, vol. 15, pp. 67-68, 1997.
[5] J.-S. Chen and K.-L. Wong, "A single-layer dual-frequency rectangular microstrip patch antenna using a single probe feed," Microwave Opt. Technol. Lett, vol. 11, pp. 83-84, 1996.
[6] Y. Murakami, W. Chujo, I. Chiba, and M. Fujise, "Dual slot-coupled microstrip antenna for dual frequency operation," Electron. Lett., vol. 29, pp. 1906-1907, 1993.
[7] M. Deepukumar, J. George, C. K. Aanandan, P. Mohanan, and K. G. Nair, "Broadband dual frequency microstrip antenna," Electron. Lett., vol. 32, pp. 1531-1532, 1996.
[8] W. Richards, S. Davidson, and S. Long, " Dual-band reactively loaded microstrip antenna," IEEE Trans. Antennas Propagat., vol. 33, pp. 556 - 561 1985.
[9] W. Bao and L. Yuen, "Microstrip Antennas for Dual-Frequency Operation," IEEE Trans. Antennas Propagat., vol. 32, pp. 938-943, 1984.
[10] D. Schaubert, F. Farrar, A. Sindoris, and S. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Trans. Antennas Propagat., vol. 29, pp. 118-123, 1981.
[11] K.-L. Wong and W.-S. Chen, "Compact microstrip antenna with dual-frequency operation," Electron. Lett., vol. 33, pp. 646-647, 1997.
[12] C.-L. Tang, H.-T. Chen, and K.-L. Wong, "Small circular microstrip antenna with dual-frequency operation," Electron. Lett., vol. 33, pp. 1112-1113, 1997.
[13] R. B. Waterhouse and N. V. Shuley, "Dual frequency microstrip rectangular patches," Electron. Lett., vol. 28, pp. 606 - 607, 1992.
[14] S.-C. Pan and K.-L. Wong, "Dual-frequency triangular microstrip antenna with a shorting pin," IEEE Trans. Antennas Propagat., vol. 45, pp. 1889 - 1891, 1997.
[15] H. Nakano and K. Vichien, "Dual-frequency square patch antenna with rectangular notch," Electron. Lett., vol. 25, pp. 1067 - 1068, 1989.
[16] D. Sanchez-Hernandez and I. D. Robertson, "Analysis and design of a dual-band circularly polarized microstrip patch antenna," IEEE Trans. Antennas Propagat., vol. 43, pp. 201 - 205, 1995.
[17] S. Maci, G. Biffi Gentili, and G. Avitabile, "Single-layer dual frequency patch antenna," Electron. Lett., vol. 29, pp. 1441 - 1443, 1993.
[18] M. El Yazidi, M. Himdi, and J. P. Daniel, "Aperture coupled microstrip antenna for dual frequency operation," Electron. Lett., vol. 29, pp. 1506 - 1508, 1993.
[19] S. Maci, G. Biffi Gentili, P. Piazzesi, and C. Salvador, "Dual-band slot-loaded patch antenna," Microwaves, Antennas and Propagation, vol. 142, pp. 225 - 232, 1995.
[20] K.-L. Wong and K.-P. Yang, "Small dual-frequency microstrip antenna with cross slot," Electron. Lett., vol. 33, pp. 1916 - 1917, 1997.
[21] K.-L. Wong and K.-P. Yang, "Compact dual-frequency microstrip antenna with a pair of bent slots," Electron. Lett., vol. 34, pp. 225 - 226, 1998.
[22] K.-P. Yang and K.-L. Wong, "Inclined-slot-coupled compact dual-frequency microstrip antenna with cross-slot," Electron. Lett., vol. 34, pp. 321 - 322, 1998.
[23] K.-L. Wong and S.-T. Fang, "Reduced-size circular microstrip antenna with dual-frequency operation," Microwave Opt. Technol. Lett, vol. 18, pp. 54-56, 1998.
[24] C.-K. Wu, K.-L. Wong, and W.-S. Chen, "Slot-coupled meandered microstrip antenna for compact dual-frequency operation," Electron. Lett., vol. 34, pp. 1047 - 1048, 1998.
[25] K.-L. Wong and J.-Y. Sze, "Dual-frequency slotted rectangular microstrip antenna," Electron. Lett., vol. 34, pp. 1368 - 1370, 1998.
[26] K.-L. Wong and G.-B. Hsieh, "Dual-frequency circular microstrip antenna with a pair of arc-shaped slots," Microwave Opt. Technol. Lett, vol. 19, pp. 410-412, 1998.
[27] J.-H. Lu and K.-L. Wong, "Single-feed dual-frequency equilateral-triangular microstrip antenna with pair of spur lines," Electron. Lett., vol. 34, pp. 1171 - 1173, 1998.
[28] K.-L. Wong, S.-T. Fang, and J.-H. Lu, "Dual-frequency equilateral-triangular microstrip antenna with a slit," Microwave Opt. Technol. Lett, vol. 19, pp. 348-350, 1998.
[29] N. Fayyaz. and S. Safavi-Naeini, "Bandwidth Enhancement of a Rectangular Patch Antenna by Integrated Reactive Loading," IEEE. AP-S Int. Symp. Dig., vol. 2, pp. 1100-1103, 1998.
[30] T. Huynh and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., vol. 31, pp. 1310 - 1312, 1995.
[31] K. F. Lee, K. M. Luk, K. F. Tong, Y. I. Yung, and T. Huynh, "Experimental study of a two-element array of U-slot patches," Electron. Lett., vol. 32, p. 418, 1996.
[32] K. M. Luk, K. F. Lee, and W. L. Tam, "Circular U-slot patch with dielectric superstrate," Electron. Lett., vol. 3, pp. 1001-1002, 1997.
[33] K.-L. Wong and Y.-F. Lin, "Microstrip-line-fed compact broadband circular microstrip antenna with chip-resistor loading," Microwave Opt. Technol. Lett, vol. 17, pp. 53-55, 1998.
[34] Y.-F. Lin and K.-L. Wong, "Compact broadband triangular microstrip antenna with an inset microstrip-line feed," Microwave Opt. Technol. Lett, vol. 17, pp. 169-170, 1998.
[35] J.-H. Lu, C.-L. Tang, and K.-L. Wong, "Slot-coupled compact broadband circular microstrip antenna with chip-resistor and chip-capacitor loadings," Microwave Opt. Technol. Lett, vol. 18, pp. 345-349, 1998.
[36] C.-Y. Huang and P.-Y. Chiu, "Dual-band monopole antenna with shorted parasitic element," Electron. Lett., vol. 41, pp. 1154-1155, 2006.
[37] J.-Y. Jan and L.-C. Tseng, "Small Planar Monopole Antenna With a Shorted Parasitic Inverted-L Wire for Wireless Communications in the 2.4-,5.2-, and 5.8-GHz Bands," IEEE Trans. Antennas Propagat., vol. 52, pp. 1903-1905, 2004.
[38] J. -F. Zurcher ,"The SSFIP: a global concept for high performance broadband planar antennas," Electron. Lett., vol. 24, pp. 1433-1435, 1988.
[39] F. Croq and A. Papiernik, "Large bandwidth aperture-coupled microstrip antenna," Electron. Lett., vol. 26, pp. 1293 - 1294, 1990.
[40] F. Croq and D. M. Pozar, "Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Trans. Antennas Propagat., vol. 39, pp. 1770 - 1776, 1991.
[41] S. D. Targonski and R. B. Waterhouse, "an aperture coupled stacked patch antenna with 50% bandwidth," in Antennas and Propagation Society International Symposium, 1996. AP-S. Digest, 1991.
[42] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," IEEE Trans. Antennas Propagat., vol. 46, pp. 1245 - 1251, 1998.
[43] K.-L. Wong and J.-Y. Wu, "Single-feed small circularly polarised square microstrip antenna," Electron. Lett., vol. 33, pp. 1833-1834, 1997.
[44] S. Dey and R. Mittra, "Compact microstrip patch antenna," Microwave and Optical Technology Letters, vol. 13, pp. 12-14, 1996.
[45] J.-H. Lu, C.-L. Tang, and K.-L. Wong, "Slot-coupled small triangular microstrip antenna," Microwave and Optical Technology Letters, vol. 16, pp. 371-374, 1997.
[46] C. R. Rowell and R. D. Murch, "A capacitively loaded PIFA for compact mobile telephone handsets," IEEE Trans. Antennas Propagat., vol. 45, pp. 837-842, 1997.
[47] R. Waterhouse, "Small microstrip patch antenna," Electron. Lett., vol. 31, pp. 30-31, 1995.
[48] R. B. Waterhouse and S. D. Targonski, "Performance of microstrip patches incorporating a single shorting post," IEEE. AP-S Int. Symp. Dig., vol. 1, pp. 29 - 32, 1996.
[49] H. Sanad, "Effect of the shorting posts on short circuit microstrip antennas," IEEE. AP-S Int. Symp. Dig., vol. 2, pp. 794 - 797, 1994.