簡易檢索 / 詳目顯示

研究生: 王睿澈
Wang, Rui-Che
論文名稱: 非反相降-昇壓型功率因數修正之前級轉換器
Non-Inverting Buck-Boost Power-Factor-Correction Front-End Converter
指導教授: 林瑞禮
Lin, Ray-Lee
共同指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 91
中文關鍵詞: 功率因數臨界電流導通模式昇壓型非反相降-昇壓型電源轉換器電壓應力成本
外文關鍵詞: power-factor-correction, PFC, boundary-conduction-mode, boost PFC converter, non-inverting buck-boost PFC converter, voltage stress, cost
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一操作於臨界電流導通模式下的非反相降-昇壓型功率因數修正電源轉換器,可提供昇壓或降壓的正輸出電壓,俾以應用於寬輸入電壓範圍。由於傳統昇壓型功率因數修正電源轉換器,需保持高昇壓率以獲得高功率因數,造成其本身與後級電路的元件承受高電壓應力,增加成本。而非反相降-昇壓型功率因數修正電源轉換器具有昇壓或降壓的功能,可被利用來解決上述之電壓應力問題。為了有效地降低電源轉換器開關在高頻切換時所造成的導通損失,非反相降-昇壓型功率因數修正電源轉換器,將被操作於臨界電流導通模式,以使得開關達到零電流切換。
    最後,本論文設計並完成一個輸出功率70W的雛型電路,並提供實驗結果,以驗證本論文提出之功率因數修正電源轉換器的性能與可行性。

    This thesis presents a boundary-conduction-mode (BCM) non-inverting buck-boost based power-factor-correction (PFC) converter for the wide input-voltage-range applications. This proposed converter has the functionality of both step-up and step-down conversion to provide the positive DC output-voltage. In order to achieve high power factor, high step-up voltage-conversion-ratio of the conventional boost PFC converter is required but leads to high voltage stress and cost of the components for the PFC stage and the following DC-DC converter stage. To reduce the voltage stress, the non-inverting buck-boost PFC converter with the step-up and step-down conversion functionality is utilized. In order to reduce the switching-loss in high-frequency applications, the BCM current control for the power switch to achieve zero-current turn-on switching is required. Finally, this thesis presents the design and implementation of the 70-watt prototype circuit for the proposed PFC converter. The experimental results are provided to validate the performance and feasibility of the proposed circuit.

    CHAPTER 1. INTRODUCTION 1 1.1. Background 1 1.2. Motivation 6 1.3. Thesis Outline 7 CHAPTER 2. WIDE INPUT-VOLTAGE-RANGE PFC CONVERTERS 8 2.1. Introduction 8 2.2. Boost DC-DC Converter for PFC Applications 8 2.3. DC-DC Converters for Wide Input-Voltage-Range PFC Applications 10 2.3.1. Continuous-Current Mode 10 2.3.2 Boundary-Current Mode 14 2.4 Summary 17 CHAPTER 3. PROPOSED BCM NON-INVERTING BUCK-BOOST PFC CONVERTER 18 3.1. Introduction 18 3.2. Proposed BCM Non-inverting Buck-Boost PFC Converter 19 3.2.1. Non-inverting Buck-Boost PFC Converter 19 3.2.2. Problem of Buck+Boost Mode with BCM 22 3.2.3. Proposed BCM Non-inverting Buck-Boost PFC Converter with Synchronous Constant On-Time Control Scheme 27 3.3. Power Factor Analysis for BCM Boost PFC Converter and Non-inverting Buck-Boost PFC Converter 31 3.4. Comparison Between Conventional BCM Boost and Proposed BCM Non-inverting Buck-Boost PFC Converter 44 3.4.1. Comparison of Circuit Topology 44 3.4.2. Comparison of Voltage Stress 45 3.4.3. Comparison of Cost 48 3.4.4. Comparison of Power Factor 48 3.4.5. Comparison of Efficiency 52 3.5. Summary 55 CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 56 4.1. Introduction 56 4.2. Implementation of the Proposed BCM Non-inverting Buck-Boost PFC Converter 56 4.2.1. Design and Analysis of the Inductance 56 4.2.2. Design and Analysis of the Cutoff Frequency for EMI Filter 61 4.2.3. Design and Analysis of the Output Capacitor 62 4.2.4. Implementation of the Prototype Circuit 63 4.3. Experimental Results for the Proposed BCM Non-inverting Buck-Boost PFC Converter 66 4.3.1. Measured Waveforms 66 4.3.2. Measured Efficiency 70 4.3.3. Measured Power Factor 71 4.3.4. Measured Input Harmonic Currents 72 4.4. Summary 73 CHAPTER 5. CONCLUSIONS AND FUTURE WORK 74 REFERENCES 76 APPENDIX A. MATHCAD® PROGRAM OF INPUT CURRENT, PF, AND THDI FUNCTION OF VOLTAGE-CONVERSION-RATIO 80 A.1. Input Current of BCM Boost PFC Converter 80 A.2. PF and THDi of BCM Boost PFC Converter 83 A.3. Input Current of BCM Non-inverting Buck-Boost PFC Converter 85 A.4. PF and THDi of BCM Non-inverting Buck-Boost PFC Converter 88 APPENDIX B. MEASURED EFFICIENCY WITH DIFFERENT OUTPUT POWER 90 VITA 91

    [1] Limits for Harmonic Current Emissions (Equipment Input Current ≤16A Per Phase), IEC-61000-3-2, Nov. 2005.
    [2] T. Nussbaumer, K. Raggl, and J. W. Kolar, “Design guidelines for interleaved single-phase boost PFC circuits,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2559-2573, Jul. 2009.
    [3] S. Busquets-Monge, J. C. Crebier, S. Ragon, E. Hertz, D. Boroyevich, Z. Gurdal, M. Arpilliere, and D. K. Lindner, “Design of a boost power factor correction converter using optimization techniques,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1388–1396, Nov. 2004.
    [4] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE Appl. Power Electron. Conf., 1993, pp. 267–273.
    [5] D. Dai, S. Li, X. Ma, and C. K. Tse, “Slow-scale instability of single-stage power-factor-correction power supplies,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no.8, pp. 1724–1735, Aug. 2007.
    [6] H. Y. Li, H. C. Chen, and L. K. Chang, “Analysis and design of a single-stage parallel AC-to-DC converter,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2989–3002, Dec. 2009.
    [7] P. R. K. Chetty, “Current injected equivalent circuit approach to modeling of switching dc–dc converters in discontinuous conduction mode,” IEEE Trans. Ind. Appl., vol. IE-29, no. 3, pp. 230–234, Aug. 1982.
    [8] E. E. H. Ismail, M. M. A. Al-Saffar, and A. A. J. Sabzali, “High conversion ratio DC–DC converters with reduced switch stress,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 2139–2151, Aug. 2008.
    [9] M. A. Có, D. S. L. Simonetti, and J. L. F. Vieira, “High power factor electronic ballast operating in critical conduction mode,” IEEE Trans. Power Electron., vol. 13, no. 1, pp. 93–101, Jan. 1998.
    [10] J. Sebastián, J. A. Cobos, J. M. Lopera, and J. Uceda, “The determination of the boundaries between continuous and discontinuous conduction mode in PWM dc-to-dc converters used as power factor preregulators,” IEEE Trans. Power Electron., vol. 10, no. 5, pp. 574–582, Sep. 1995.
    [11] C. A. Canesin and F. A. S. Goncalves, “Single-phase high power-factor boost ZCS pre-regulator operating in critical conduction mode,” in Proc. IEEE Int. Symp. Ind. Electron., 2003, pp. 746–751.
    [12] C. M. de Oliveira Stein, J. R. Pinheiro, and H. L. Hey, “A ZCT auxiliary commutation circuit for interleaved boost converters operating in critical conduction mode,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 954–962, Nov. 2002.
    [13] F. Tao and F. C. Lee, “A critical-conduction-mode single-stage power-factor-correction electronic ballast,” in Proc. 15th Annu. IEEE Appl. Power Electron. Conf. Expo., 2000, pp. 654–660.
    [14] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous mode boost converter,” in proc IEEE Power Electronics Specialists Conf., 1989, pp. 825–829.
    [15] P. F. de Melo, R. Gules, E. F. R. Romaneli, and R. C. Annunziato, “A modified SEPIC converter for high power factor rectifier and universal-input voltage applications,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 310–321, Feb. 2010.
    [16] J. M. Kwon, W. Y. Choi, J. J Lee, E. H. Kim, and B. H. Kwon, “Continuous-conduction-mode SEPIC converter with low reverse-recovery loss for power factor correction,” IEEE Trans. Power Electron., vol. 153, no. 5, pp. 673–681, Sep. 2006.
    [17] Y. Zhao, Single phase power factor correction circuit with wide output voltage range, M.S. thesis, University of Virginia, Virginia, EE, 1998.
    [18] E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Buck-boost-type unity power factor rectifier with extended voltage-conversion ratio,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1123–1132, Mar. 2008.
    [19] J. Chen, D. Maksimovic, and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 320–329, Mar. 2006.
    [20] G. K. Andersen and F. Blaabjerg, “Current programmed control of a single-phase two-switch buck-boost power factor correction circuit,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 263–271, Feb. 2006.
    [21] R. Ridley, S. Kern, and B. Fuld, “Analysis and design of a wide input range power factor correction circuit for three-phase applications,” in Proc. 8th Annu. IEEE Appl. Power Electron. Conf. Expo., San Diego, CA, Mar. 7-11, 1993, pp. 299–305.
    [22] T. F. Wu and Y. K. Chen, “Analysis and design of an isolated single-stage converter achieving power-factor correction and fast regulation,” IEEE Trans. Ind. Electron., vol. 46, no. 4, pp. 759–767, Aug. 1999.
    [23] S. Buso, G. Spiazzi, and D. Tagliavia, “Simplified control technique for high-power-factor flyback Cuk and SEPIC rectifiers operating in CCM,” IEEE Trans. Ind. Appl., vol. 36, no. 5, pp. 1413–1418, Sep./Oct. 2000.
    [24] J. Chen, D. Maksimovic´, and R. Erickson, “Buck-boost PWM converters having two independently controlled switches,” in Proc. IEEE Power Electron. Specialists Conf., 2001, pp. 736–741.
    [25] S. Barkaro and S. Solna, “Buck boost switching regulator,” U. S. Patent 5,949,224, 7 Sep., 1999.
    [26] R. Paul, D. Maksimovic, “Analysis of PWM nonlinearity in non-inverting buck-boost power converters,” in Proc. IEEE Power Electron. Specialists Conf., 2008, pp. 3741–3747.
    [27] Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck-boost converter,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1002–1015, Apr. 2009.
    [28] A. Elasser and D. A. Torrey, “Soft switching active snubber for DC/DC converters,” IEEE Trans. Power Electron., vol. 11, no. 5, pp. 710–722, Sep. 1996.
    [29] K. Harada, T. Ninomiya, and M. Kohno, “Optimum design of RC snubbers for switching regulators,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-15, pp. 209–218, Mar. 1979.
    [30] W. McMurray, “Selection of snubbers and clamps to optimize the design of transistor switching converters,” IEEE Trans. Ind. Appl., vol. 1A-16, no.4, pp. 513–523, Jul./Aug. 1980.
    [31] Claudio Adragna, “Enhanced transition mode power factor corrector,” Appl. Note 966, pp.9–10.
    [32] R. L. Lin, H. Y. Liu, and H. M. Shih, “AC-side CCM CS–CP–PFC electronic ballast,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 789–796, May 2007.
    [33] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction circuits,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 199–205, Jan. 1996.

    下載圖示 校內:2015-07-07公開
    校外:2015-07-07公開
    QR CODE