簡易檢索 / 詳目顯示

研究生: 張彥夫
Chang, Yen-Fu
論文名稱: 基於功率模糊法能考量熱效應之數學解析式平面規劃方法
Thermal-Aware Analytical Floorplanning Framework Based On Power Blurring Method
指導教授: 林家民
Lin, Jai-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 42
中文關鍵詞: 平面規劃熱效應固定框架
外文關鍵詞: floorplanning, thermal effect, fixed-outline
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著晶片製程的持續發展,不僅讓每單位面積內的電晶體數量穩定上升中,相應的,單位面積內的功率,也稱為功率密度(power density),不可避免的也持續上升。更高的功率密度會造成晶片的平均溫度上升,而當晶片中的溫度提高時,可能會造成電晶體的漏電流持續上升,進一步的提高溫度,形成惡性循環。這種情況嚴重甚至會造成晶片燒毀的現象,設計者可能必須調降晶片效能以使晶片可以運作。因此,在現代設計中,熱效應的問題越來越顯著,在晶片中消除可能出現的熱點已經成為一個必須考慮的因素。雖過去已有許多著作針對熱效應平面規劃進行研究與探討,但多半採用隨機擾動之演算法,通常耗時甚久,且結果之品質並不穩定。由於上述原因,本論文提出一個考量熱效應並滿足固定框架限制的解析式平面規劃方法,其中大略分為兩個階段。首先於全域分布階段中,透過數學解析法同時最佳化溫度以及繞線長度(wirelength),讓較熱之模組可以互相遠離,藉此不讓熱堆積以至於產生更高之溫度,而獲得具考量溫度且全域觀的初始分布狀態;接著於局部合法化擺置階段,在不過度影響前一階段結果的前提下,移除掉覆蓋區域以獲得可行的平面規劃結果。由實驗結果顯示,本論文所提出的方法可以在不增加過多的線長前提下,讓整體的溫度進一步的降低。

    As advance of the manufacture technology, the number of transistors in a chip increase dramatically. And this also causes the average power density of a chip rise continuously. The high power density results in higher temperature, which may cause more leakage current appearing and a negative feedback occurs. The designers may need to slow down the chip frequency in order to improve chip stability. Therefore, eliminating possible hotspots has become a serious problem in modern IC designs. Although there has been some works focus on thermal aware floorplanning methodology, the main architecture usually based on the simulated annealing algorithm, which is very time consuming. Further, the solution quality is not stable. Hence, this thesis proposes a thermal aware floorplanning methodology based on the analytical approaches. The proposed methodology can be divided into two parts. The first stage optimizes wirelength and while reducing chip temperature at the same time. The second stage removes overlap area to get a feasible floorplan. The experiment results show that our methodology can reduce the peak temperature while not increasing too much wirelength.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Previous Works 2 1.1.1 Thermal Solver 2 1.1.2 Floorplanning 3 1.1.3 Floorplanning Considering Thermal Issue 4 1.2 Our Contributions 6 1.3 Thesis Organization 7 Chapter 2 Problem Formulation 8 Chapter 3 Preliminaries 9 3.1 Thermal Evaluation Method 9 3.2 Thermal Mask Construction 11 3.3 SAINT: 3D Fixed-outline Floorplanner 14 Chapter 4 Thermal-Aware Floorplanning Methodology 17 4.1 Overview of Our Methodology 17 4.2 Thermal Aware Global Distribution Stage 18 4.2.1 Analytical Approach for Considering Thermal Issue 19 4.2.2 Approach to Estimate Temperature 19 4.2.3 Solve for Analytical Formulation 22 4.3 Two Stage Optimization Switching and Local Legalization Stage 24 Chapter 5 Experimental Results 27 5.1 Effectiveness on Improving Uniformity of Temperature Distribution 28 5.1.1 GSRC benchmarks 28 5.1.2 IBM benchmarks 32 5.2 Comparison with Corblivar [23] 33 5.2.1 GSRC benchmarks 34 5.2.2 IBM benchmarks 36 Chapter 6 Conclusion 38 Bibliography 39

    [1] E. K. Ardestani, A. Ziabari, A. Shakouri, and J. Renau, “Enabling power density and thermal-aware floorplanning,” in Proc. SEMI-THERM, pp. 18-22, March 2012.
    [2] T. A. Asghari, “A transient thermal analysis using a simplified heat transfer coefficient model,” in Proc. International Symposium on Advanced Packaging Materials, pp. 366-371, March 2001.
    [3] P. Budhathoki, A. Henschel, and I. A. M. Elfadel, “Thermal-driven 3D floorplanning using localized TSV placement,” in Proc. ICICDT, pp. 1-4, May 2014.
    [4] D. Chen, E. Li, E. Rosenbaum, and S.-M. Kang, “Interconnect thermal modeling for accurate simulatoin of circuit timing and reliability,” IEEE TCAD, vol. 19, no. 2, pp. 197-205, Feb. 2000.
    [5] G. Chen and S. Sapatnekar, “Partition-driven standard cell thermal placement,” in Proc. ISPD, pp. 75-80, April 2003.
    [6] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “NTUplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints,” IEEE TCAD, vol. 27, no. 7, pp. 1228-1240, July 2008.
    [7] Y. K. Cheng, P. Raha, C. C. Teng, E. Rosenbaum, and S. M. Kang, “LLIADS-T: An electrothermal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI chips,” IEEE TCAD, vol. 17, no. 8, pp. 668-681, Aug. 1998.
    [8] J. Cong, J.Wei, and Y. Zhang, “A Thermal-driven floorplanning algorithm for 3D ics,” in Proc. ICCAD, pp. 306-313, Nov. 2004.
    [9] J. Cong, G-J. Luo, J Wei, and Y. Zhang, “Thermal-aware 3D IC placement via transformation,” in Proc. ASP-DAC, pp. 780-785, Jan. 2007.
    [10] D. Cuesta, J. L. Risco-Martin, J. L. Ayala, and J. I. Hidalgo, “3D thermal-aware floorplanner using a MOEA approximation,” J. VLSI Integr., vol. 46, no. 1, pp. 10-21, Jan. 2013.
    [11] D. Cuesta, J. L. Risco-Martin, and J. L. Ayala, “3D thermal-aware floorplanner using a MILP approximation,” J. VLSI Integr., vol. 46, no. 1, pp. 344-354, Jan. 2013.
    40
    [12] G. Digele, S. Lindenkreuz, and E. Kasper, “Fully coupled dynamic electrothermal simulation,” IEEE TVLSI, vol. 5, no. 3, pp. 250-257, Sep. 1997.
    [13] FFTW Library [Online]: http://www.fftw.org/
    [14] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard cells in 3D ICs using a force directed approach,” in Proc. ICCAD, pp. 86-89, Nov. 2003.
    [15] B. Goplen ans S. Sapatnekar, “Thermal via placement in 3D ICs,” in Proc. ISPD, pp. 167-174, April 2005.
    [16] Y. Han, and I. Koren, “Simulated annealing based temperature aware floorplanning,” J. Low Power Electron, vol. 3, no. 2, pp. 141-155, 2007.
    [17] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analytical placement for 3D IC designs,” in Proc. DAC, pp. 664-669, June 2011.
    [18] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S. Veluswamy, “Hotspot: a compact thermal modeling methodology for early stage VLSI design,” IEEE TVLSI, vol. 14, no. 5, pp. 501-513, May 2006.
    [19] P.-Y. Huang and Y.-M. Lee, “Full-chip thermal analysis for the early design stage via generalized integral transforms,” IEEE TCAD, vol. 17, no. 5, pp. 613-626, May 2009.
    [20] W.-L. Hung, G. M. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin, “Interconnect and thermal-aware floorplanning for 3D microprocessors,” in Proc. ISQED, pp. 98-104, March 2006.
    [21] A. B. Kahng, S. Reda, and Q.Wang, “APlace: a general analytic placement framework,” in Proc. ISPD, pp. 233-235, April 2005.
    [22] A. B. Kahng, S. M. Kang, W. Li, and B. Liu, “Analytical thermal placement for VLSI lifetime improvement and minimum performance variation,” in Proc. ICCAD, pp. 71-77, Oct. 2007.
    [23] J. Knechtel, E. Young, J. Lienig, “Planning massive interconnects in 3-d chips,” IEEE TCAD, vol. 34, no. 11, pp. 1808-1821, Nov. 2015.
    [24] M. Kuwano and Y. Takashima, “Stable-LSE based analytical placement with overlap removable length,” in Proc. SASIMI, pp. 115-120, 2010.
    41
    [25] J. Li and H. Miyashita, “Thermal-aware placement based on FM partition scheme and force-directed heuristic,” IEICE Trans. Fundam. Electron. Commun. Computet., vol. 89, no. 4, pp. 989-995, Apr. 2006.
    [26] X. Li, Y. Ma, and X. Hong, “A novel thermal optimization flow using incremental floorplanning for 3D ICs,” in Proc. ASP-DAC, pp. 347-352, Jan. 2009.
    [27] W. Liao, L. He, and K. Lepak, “Temperature-aware performance and power modeling,” Technical Report UCLA Engr. 04-250, 2004.
    [28] J.-M. Lin, P.-Y. Chiu, and Y.-F. Chang, “SAINT: handling module folding and alignment in fixed-outline floorplans for 3D ICs,” in Proc. ICCAD, Nov. 2016.
    [29] S. Aroonsantidecha, S. S.-Y. Liu, C.-Y. Chin, and H.-M. Chen, “Fast thermal aware placement with accurate thermal analysis based on green function,” in Proc. ASP-DAC, pp. 425-430, Feb. 2012.
    [30] G. Luo, Y. Shi, and Jason Cong, “An analytical placement framework for 3-D ICs and its extension on thermal awareness,” IEEE TCAD, vol. 32, no. 4, pp. 510-523, April 2013.
    [31] W.C. Naylor R. Donelly, and L. Sha, “Non-Linear optimization system and method for wire length and delay optimization for an automatic electric circuit placer,” U.S. Patent 6 301 693, 2001.
    [32] X. Ning, and J. Zhonghua, “Thermal aware floorplanning using gauss-seidel method,” PATMOS 2005, vol.25 no.6, pp. 845-851, Nov. 2008.
    [33] B. Obermeier and F. M. Johannes, “Temperature-aware global placement,” in Proc. ASP-DAC, pp. 143-148, Jan. 2004.
    [34] A. Quarteroni, R. Sacco and F. Saleri, “Numerical Mathematics,” Springer, 2006.
    [35] V. A. M. N. Sabry, A. Bontemps, and R. Vahrmann, “Realistic and efficient simulation of electrothermal effects in VLSI circuits,” IEEE TCAD, vol. 5, no. 3, pp. 283-289, Sep. 1997.
    [36] C. H. Tsai and S. M. Kang, “Cell-level placement for improving substrate thermal distribution,” IEEE TCAD, vol. 19, no. 2, pp. 253-266, Feb. 2000.
    42
    [37] B. Wang and P. Mazumder, “Accelerated chip-level thermal analysis using multilayer Greens function,” IEEE TCAD, vol. 26, no. 2, pp. 325-344, Feb. 2007.
    [38] C.-C. Wen, Y.-J. Chen, and S.-J. Ruan, “Cluster-based thermal-aware 3D-floorplanning technique with post-floorplan TTSV insertion at via-channels,” in Proc. ASQED, pp. 26-28, Aug. 2013.
    [39] C. C. S. Wunsche, C. Clauss, P. Schwarz, and F. Winkler, “Electrothermal circuit simulation using simulator coupling,” IEEE TVLSI, vol. 5, no. 3, pp. 277-282, Sep. 1997.
    [40] L. Xiao, S. Sinha, J. Xu, and E. Young, “Fixed-outline thermal-aware 3d floorplanning,” in Proc. ASP-DAC, pp. 561-567, Jan. 2010.
    [41] H. Yan, Q. Zhou, and X. Hong, “Thermal aware placement in 3-D ICs using quadratic uniformity modeling approach,” J. VLSI Integr., vol. 42, no. 2, pp. 175-180, 2009.
    [42] Y. Zhan and S. S. Sapatnekar, “High efficiency green functionbased thermal simulation algorithms,” IEEE TCAD, vol. 26, no. 9, pp. 1661-1675, Sep. 2007.
    [43] P. Zhou, Y. Ma, Z. Li, R. Dick, L. Shang, H. Zhou, X. Hong, and Q. Zhou, “3D-STAF: scalable temperature and leakage aware floorplanning for three-dimensional integrated circuits,” in Proc. ICCAD, pp. 590-597, Nov. 2007.
    [44] A. Ziabari, J.-H. Park, E. Ardestani, J. Renau, S.-M. Kang, and A. Shakouri, “Power Blurring: fast static and transient thermal analysis method for packaged integrated circuits and power devices,” IEEE TVLSI, vol. 22, no. 11, pp. 2366-2379, Nov 2014.

    無法下載圖示 校內:2022-08-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE