| 研究生: |
張育彬 Chang, Yu-Pin |
|---|---|
| 論文名稱: |
(1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 介電陶瓷之微波特性及其應用 Microwave Dielectric Properties and Applications of (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 Ceramics |
| 指導教授: |
黃正亮
Haugh, Cheuy-Liag |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 濾波器 、介電材料 |
| 外文關鍵詞: | Dielectric material, Filter |
| 相關次數: | 點閱:53 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本論文中探討(1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3之陶瓷微波介電特性及材料的微結構。為了使溫度係數達到平衡,我們使用正和負的溫度係數來混合。SrTiO3的材料特性為 ~205, Q × f ~4200GHz,及 約1700 ppm/ oC ;(Mg0.95Zn0.05)TiO3 為 ~17, Q × f ~260,000在9GHz,及 約-40 ppm/ oC 。x值為0.02~0.1來探討, 其(1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3之介電材料特性為:18.67< < 26.35; 161,000 > Q × f >20,000和 -35 < < 140。藉著調整x值可以在(1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3陶瓷系列中找到 值趨近零。而在0.96(Mg0.95Zn0.05)TiO3-0.04SrTiO3(以後簡稱96MZST)中可以找到較良好的介電材料: ~ 20.7, Q × f ~ 135,000在9GHz 和 ~ 0 ppm/oC。此外在0.96(Mg0.95Zn0.05)TiO3-0.04SrTiO3分別添加不同量燒結促進劑V2O5、CuO ,探討其液相對其微波材料特性之影響。
此外,本論文以FR4、Al2O3及96MZST三種不同基板,設計二個以四分之ㄧ波長開路殘段可調式零點的帶通濾波器,中心頻率定為2.45GHz,頻寬8%。比較三種不同基板,可發現96MZST具有縮小電路面積,且有良好的頻率響應。
Abstract
The microwave dielectric properties of the (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 ceramic system were investigated in this thesis. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. SrTiO3 has dielectric properties of dielectric constant ~ 205, Q × f value ~ 4,200 GHz and a large positive τf value ~ 1700 ppm/oC. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant ( ~ 17), high quality factor (Q × f value ~ 260,000 at 9 GHz) and negative τf value (-40 ppm/oC). As the x value varies from 0.02 to 0.1, (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 ceramic system has the dielectric properties as follows: 18.67 < < 26.35; 161,000 > Q × f > 20,000 and -35< τf <140. By appropriately adjusting the x value in the (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 ceramic system, zero τf value can be achieved. A new microwave dielectric material, 0.96(Mg0.95Zn0.05)TiO3-0.04SrTiO3 applicable in microwave devices is suggested and possesses the dielectric properties of a dielectric constant ~ 20.7, a Q × f value ~ 135,000 GHz (at 9 GHz) and a τf value ~ 0 ppm/oC. Besides, by adding different sintering aids V2O5 and CuO respectively, we research what the effects of liquid phase for the microwave properties of 0.96(Mg0.95Zn0.05)TiO3-0.04SrTiO3.
In addition, we utilizes two quarter wavelengths to control transmission zeros in the bandpass filter and fabricated its on FR4、Al2O3、96MZST substrates. The center frequency is 2.45 GHz and bandwith is 8%.Comparing with three different substrates, we can research into reduction of 96MZST circuit device and good frequency response.
參考文獻
[1] K. Wakino, Ferroelectrics 91 (1989) 69.
[2] C.-L Hung and S.-H Liu, ”Characterization of Extremely Low Loss Dielectric
(Mg0.95Zn0.05)TiO3 at Microwave Frequency” submitted to Materials letter.
[3] P. H. Sun, T. Nakamura, Y. J. Shan, Y. Inaguma, M. Itoh, and T. Kitamura Jpn. J. Appl. Phys. Vol.37 1998 pp. 5625~5629
[4] V. N. Eremenko, Y. V. Naidich and I. Aienko, "Liquid Sintefing," (Consolation New York, 1970, ch4).
[5] K. S. Hwang, Phd Thesis, Rensselaer Ploytechnic in Troy (1984).
[6] J. W. Cahn and R. B. Heady, J. Am. Ceram. pp. 406,1970.
[7] W. J. Huppmann and G. Petzow: Sintering process, Edited by G.C. Kuczynski (Plenum Press, New York, pp. 189, (1980).
[8] W. J. Huppmann and G. Petzow, Ber. Bunnsenges Phys. Chem.82, pp. 308 (1978).
[9] R. M. German: Liquid Phase Sintering, (Plenum Press, New York 1985,ch4).
[10] J. H. Jean and C. H. Lin: J. Mater. Sci. 24 , pp500, 1989.
[11] David M. Pozar “Microwave Engineering”, Addison-Wesley,1998
[12] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[13] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News,” vol. 13, pp. 152-161, 1983.
[14] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House, 1989
[15] L. A. Trinogga, Guo Kaizhou, I. C. Hunter, “Practical microstrip circuit design,” UK: Ellis Horwood, 1991.
[16] K. C. Gupta, R. Garg, I. Bahl, and E Bhartis, “Microstrip Lines and Slotlines,” Second Edition, Artech House, Boston, 1996.
[17] E. O. Hammerstard, “Proceedings of the European Microwave Conference,” pp. 268-272 , 1975
[18] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech.,” vol. MIT-28, pp. 513–522, Jun 1980.
[19] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998, ch.1.
[20] R. A. Pucel, D. J. Masse, C. E. Hartwig,“ Losses in microstrip,” IEEE. Trans.
Microwave Theory Tech., vol. MIT-16, pp.342-350, Jun. 1968.
[21] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[22] V. Nalbandian, W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
[23] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, 1998.
[24] J. S. Hong, M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol.44, pp. 2099-2109, Nov. 1996.
[25] T. E dwards, Foundations for microstrip circuit design, second edition., UK: Wiley, 1991.
[26] R. L. Geiger, P. E. Allen, N.R.Strader, VLSI design techniques for analog and digital circuits., New York: McGraw-Hill, 1990, pp. 674-685.
[27] J. S. Hong and M. J. Lancaster, “Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 2099-2109, 1996
[28] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,
” McGraw-Hill, 1992.
[29] J. S. Wong, “Microstrip tapped-line filter design, ” IEEE Trans. Microwave Theory Tech, vol. MTT-27, pp. 44-50, Jan.1979.
[30] International Telephone and Telegraph Corp., Reference Data for Radio Engineers, 6thEd. Howard W. Sams Co., Inc.
[31] M. Makimoto, M. Sagawa, “Varactor tuned bandpass filters using microstrip-line ring resonator,” IEEE MTT-S Int. Microwave Symp , Dig. pp. 411-414, May 1986,
[32] David M. Pozar , Microwave engineering , second edition., pp.299-303, 1998
[33] Shuen-Chian Chang, “Analysis and Design of Multilayer Dual-Band Bandpass Filters, ” National Chuns Chens University, Taiwan, pp. 47-48, June 2003.
[34] Jae-Ryong Lee, Jeong-Hoon Cho, Sang-Won Yun, “New Compact Bandpass Filter Using Microstrip λ/4 Resonators with Open Stub Inverter,” IEEE Microwave and Guide Wave Letters, vol.10, NO.12, December 2000.
[35] Lei Zhu, Senior Member, IEEE, Wolfgang Menzel, Fellow, IEEE , “Compact Microstrip Bandpass Filter With Two Transmission Zeros Using a Stub-Tapped Half-Wavelength Line Resonator, ” IEEE Microwave and Wireless Components Letters, vol.13, NO. 1, January 2003.
[36] W. E. Courtney “Analysis and evaluation of a method of measuring the complex
permittivity and permeability of microwave insulators” IEEE. Trans. Microwave Theory Tegh. , vol.MTT-18, pp. 476-485, 1970
[37] Y. Kobayashi and N. Katoh “Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method “ IEEE. Trans. MTT, vol.
MTT-33 , pp586-592 , 1985
[38] O. V. Karpova: Soviet Phys. vol. 1 , pp. 220, 1959
[39] S. H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519,1 985
[40] P. Wheless and D. Kajfez "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators” IEEE. MTT-S, Symposium Dig. ,pp.473-476, 1985
[41] B. W. Hakki and P. D. Coleman “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range" IEEE. Trans. MTT , vol. MTTS ,pp. 402-410,1960
[42] W. W. Cho, K. Kakimoto and H. Ohsato “High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency” Jpn. J. Appl. Phys. vol.43, No9A, 2004. pp. 6221-6244