| 研究生: |
歐弘毅 Ou, Horng-Yih |
|---|---|
| 論文名稱: |
肝臟激素在高血壓、糖尿病及非酒精性脂肪肝疾病角色之研究 Role of hepatokines in hypertension, diabetes, and nonalcoholic fatty liver disease |
| 指導教授: |
張智仁
Chang, Chih-Jen |
| 共同指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 視網醇結合蛋白4 、胎球蛋白A 、高血壓 、糖尿病 、非酒精性脂肪肝疾病 |
| 外文關鍵詞: | retinol-binding protein 4, fetuin-A, hypertension, diabetes, nonalcoholic fatty liver disease |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「胰島素阻抗性」是代謝症候群的致病主因。愈來愈多的證據顯示,由肝臟產生的體液因子可能會影響胰島素標的組織之胰島素訊息傳遞,而這些肝臟合成/釋放的蛋白質(hepatokines,肝臟激素)包括視網醇結合蛋白4 (retinol-binding protein 4, RBP4)與胎球蛋白A (fetuin-A)。在本研究的設計架構中,首先我們探討RBP4在高血壓動物模式與人類受試者的病態生理學所扮演之角色。其次,我們探討血清fetuin-A濃度和不同血糖狀況病人間之相關性。最後,我們研究當糖尿病合併非酒精性脂肪肝疾病時對血清fetuin-A濃度之影響。
在第一部分的研究中,我們利用自發性高血壓大鼠(SHR)來探討RBP4與胰島素阻抗性間之關係。研究結果發現在7週大的SHR大鼠,其血清中RBP4濃度與肝臟及附睾脂肪組織中的RBP4表現量都比對照組WKY大鼠高,同時也伴隨著胰島素阻抗性的增加。而當給予SHR大鼠fenretinide藥物以增加尿中RBP4的排泄時,不僅可降低血清中RBP4的濃度,也可顯著改善胰島素阻抗性。此外,使用血管收縮素II受體阻斷劑(valsartan)治療SHR大鼠,除了可降低血壓外,同樣也可降低血清中RBP4濃度及改善胰島素阻抗性。這些結果顯示,RBP4在SHR大鼠的胰島素阻抗性的致病機轉中扮演重要角色。
在人體的初步早期研究中,我們發現在血糖正常且無胰島素阻抗性的肥胖受試者,血壓是血清中RBP4的獨立相關因子。因此,我們進一步探討血清中RBP4濃度與「高血壓前期」和「新診斷高血壓」間之關係。研究結果發現,在年齡和性別匹配的「正常血壓」、「高血壓前期」及「新診斷高血壓」三組受試者中,男性的血清RBP4濃度都高於女性。然而,血清RBP4濃度在「高血壓前期」及「新診斷高血壓」組並未比「正常血壓」組高。多元線性回歸分析結果發現,血清RBP4濃度與男性(p<0.05),估計腎絲球濾過率(eGFR)(p<0.05)及空腹血糖值(p<0.001)呈現獨立相關,但與「血壓」,「高血壓前期」和「新診斷高血壓」則沒有相關。由於 RBP4是一種低分子量蛋白質,可自由地經腎絲球濾出,隨後再完全吸收到近端腎小管中,因此我們的研究結果顯示,血壓對RBP4的影響遠小於腎功能的影響。這也是「高血壓前期」和「新診斷高血壓」對 RBP4濃度並無顯著影響的主因。
Fetuin-A是一種肝源性糖蛋白,在過去的研究發現fetuin-A會抑制胰島素的訊息傳遞,導致胰島素阻抗性的發生。研究也顯示,血清fetuin-A與與肝臟中脂肪含量成正相關;同時,在前瞻性研究中發現血清fetuin-A也可預測第2型糖尿病發生的風險。為了探討fetuin-A在血糖代謝異常的角色,我們延攬年齡和性別匹配的「正常血糖」(NGT)、「空腹血糖異常」(IFG)、「葡萄糖耐受性不良」(IGT)和「新診斷糖尿病」(NDD)且無非酒精性脂肪肝疾病(NAFLD)四組受試者。結果顯示,血清fetuin-A濃度在「葡萄糖耐受性不良」和「新診斷糖尿病」組顯著高於「正常血糖」組。多元線性回歸分析結果也發現,經調整年齡、人體測量學指標、血脂值、估計腎絲球濾過率、脂締素(adiponectin)、C -反應蛋白(CRP)與胰島素阻抗性指標(HOMA- IR)後,IGT(p<0.01)和NDD(p<0.01)仍與血清fetuin-A濃度呈現正相關,但年齡(p<0.05)則是負相關因素。
最後,我們發現當糖尿病併發NAFLD時,會明顯升高糖尿病患者血清fetuin-A濃度。即便在調整過其他心臟代謝危險因素(包括中心型肥胖、CRP、血脂值與脂締素)後,仍然具有統計上的顯著差異。因此,我們推測fetuin- A血清濃度的升高可能與併發糖尿病及非酒精性脂肪肝疾病之患者有較高的心血管疾病發病率有關。
綜言之,在本研究中,我們證明了肝臟和脂肪組織產生的RBP4在SHR大鼠胰島素阻抗性惡化的致病機轉中扮演重要角色。我們的研究結果也顯示,血管收縮素II受體阻斷劑(valsartan)的胰島素增敏作用與RBP4血中濃度減少有關。在人類研究中,我們發現在腎功能正常的「新診斷高血壓」、「高血壓前期」及「正常血壓」受試者血清RBP4濃度並無差異。同時,在調整過性別與心血管危險因素後,估計腎絲球濾過率仍與血清RBP4濃度獨立相關。此外,我們證明了無「非酒精性脂肪肝疾病」之「新診斷糖尿病」與「葡萄糖耐受性不良」組的受試者,血清fetuin-A濃度比「正常血糖」組高。我們的結果也顯示,當糖尿病併發NAFLD時,會進一步提升血清fetuin-A濃度。至於fetuin-A在脂肪肝和糖尿病患者相關的心血管疾病風險之角色,未來還需要前瞻性研究進一步研究及探討。
Insulin resistance (IR) is a fundamental component of metabolic syndrome. Growing evidence suggests that humoral factors produced by the liver may affect insulin signaling in insulin-responsive tissues. These liver synthesized/released-proteins are referred to as “hepatokines”, and include retinol binding protein 4 (RBP4) and fetuin-A. This study was designed to investigate the role of RBP4 in hypertensive human subjects and spontaneously hypertensive rats (SHR). In addition, we also investigated the relationship between serum fetuin-A concentrations and different glycemic status. Finally, we studied the combined effect of diabetes and nonalcoholic fatty liver disease (NAFLD) on serum fetuin-A levels.
In the first part of the study, we used SHR to evaluate the relationship between RBP4 levels and IR. We found that in SHR with developing hypertension, serum levels and expression of RBP4 in liver and epididymal adipose tissue were increased, accompanied by worsening of IR as compared with Wistar-Kyoto (WKY) control rats. Administration of fenretinide in SHR to increase urinary RBP4 excretion significantly decreased plasma RBP4 levels and improved IR. Moreover, treatment with valsartan markedly reduced blood pressure, circulating RBP4 levels, and IR in SHR. Valsartan also reversed the increase of hepatic gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and the decrease of type 4 glucose transporter (GLUT4) in adipose tissue. These results suggest that RBP4 contributes, at least partly, to the pathogenesis of IR in SHR.
In our early work on human subjects, we found that blood pressure is an independently associated factor of serum RBP4 in normoglycemic non-insulin-resistant obese subjects. Therefore, we further investigated the relationship among serum RBP4 levels and prehypertension and newly-diagnosed hypertension. We showed that among age- and sex-matched subjects with normotension, prehypertension, and hypertension, males had higher RBP4 levels than females. However, serum RBP4 levels were not increased in hypertensive and prehypertensive subjects as compared with normotensive subjects. In multivariate linear regression analysis, serum RBP4 was independently associated with male gender (p<0.05), estimated glomerular filtration rate (eGFR) (p<0.05), and fasting plasma glucose (p<0.001), but not with blood pressure, prehypertension, and hypertension. As RBP4 is a low-molecular weight protein which is freely filtered in the glomeruli and subsequently completely reabsorbed into proximal renal tubule, our results suggest that the effect of blood pressure on RBP4 is less than that of renal function. This may be the explanation for the insignificant effect of prehypertension and newly-diagnosed hypertension on RBP4 levels.
Fetuin-A is a liver-derived glycoprotein which inhibits insulin signaling. Previous studies have shown that serum fetuin-A concentrations positively correlate with liver fat and predict type 2 diabetes in prospective studies. To explore the role of fetuin-A in glycemic dysregulation, we recruited age- and sex-matched subjects with normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and newly-diagnosed diabetes (NDD) but without NAFLD in a case-control study. We found that the serum fetuin-A concentration was significantly higher in the NDD and IGT groups than NGT group. In multiple regression analysis, IGT (p<0.01) and NDD (p<0.01) were the positively associated factors of serum fetuin-A concentration, but age (p<0.05) was a negatively associated factor after adjusting for age, anthropometric indices, lipid profile, eGFR, adiponectin, C-reactive protein (CRP), and homeostasis model assessment (HOMA-IR). We thus conclude that IGT and NDD are positively associated with serum fetuin-A concentrations in subjects without NAFLD independent of cardiometabolic risk factors.
Finally, we demonstrated that the concurrence of NAFLD significantly increased fetuin-A concentrations in diabetic patients. This increase in fetuin-A concentration in diabetic patients with NAFLD is independent of several cardiometabolic risk factors, including central obesity, CRP, lipid profile, and adiponectin. We speculate the elevated fetuin-A levels may contribute significantly to the increased incidence of cardiovascular disease among subjects with both diabetes and NAFLD.
In conclusion, we demonstrate that in SHR rats with developing hypertension, the elevated levels of RBP4 secreted from liver and adipose tissue may play a pathophyiological role in the worsening of IR. Our findings also suggest that the insulin sensitizing effect of valsartan is associated with a decrease in circulating levels of RBP4. In human studies, we found that newly-diagnosed hypertensive, prehypertensive, and normotensive subjects with normal renal function had similar serum RBP4 levels and that eGFR is significantly related to serum RBP4 levels independent of gender and cardiovascular risk factors. In addition, we demonstrated that the subjects with NDD and IGT had higher serum fetuin-A concentrations than those with NGT in the population without NAFLD. Our data also suggested that concomitant NAFLD in diabetic patients further elevated serum fetuin-A concentrations independent of cardiovascular risk factors, CRP, and adiponectin. Future prospective studies are needed to establish the role of fetuin-A in the high cardiovascular risk associated with NAFLD and diabetes.
1. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 2007; 30: 753-759
2. Faerch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia 2009; 52: 1714-1723
3. Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 2008; 93: S64-73
4. Mori K, Emoto M, Yokoyama H, Araki T, Teramura M, Koyama H, Shoji T, Inaba M, Nishizawa Y. Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care 2006; 29: 468
5. Tonjes A, Fasshauer M, Kratzsch J, Stumvoll M, Bluher M. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes. PLoS One 2010; 5: e13911
6. Osei K, Gaillard T, Schuster D. Plasma adiponectin levels in high risk African-Americans with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes. Obes Res 2005; 13: 179-185
7. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson P-A, Smith U, Kahn BB. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 2006; 354: 2552-2563
8. Cho YM, Youn BS, Lee H, Lee N, Min SS, Kwak SH, Lee HK, Park KS. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 2006; 29: 2457-2461
9. Lautt WW. The HISS story overview: a novel hepatic neurohumoral regulation of peripheral insulin sensitivity in health and diabetes. Can J Physiol Pharmacol 1999; 77: 553-562
10. Petersen KF, Tygstrup N. A liver factor increasing glucose uptake in rat hindquarters. J Hepatol 1994; 20: 461-465
11. Hwang JH, Stein DT, Barzilai N, Cui MH, Tonelli J, Kishore P, Hawkins M. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am J Physiol Endocrinol Metab 2007; 293: E1663-1669
12. Stefan N, Kantartzis K, Haring HU. Causes and metabolic consequences of Fatty liver. Endocr Rev 2008; 29: 939-960
13. Blaner WS. Retinol-binding protein: the serum transport protein for vitamin A. Endocr Rev 1989; 10: 308-316
14. van Dam RM, Hu FB. Lipocalins and insulin resistance: etiological role of retinol-binding protein 4 and lipocalin-2? Clin Chem 2007; 53: 5-7
15. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356-362
16. Ost A, Danielsson A, Liden M, Eriksson U, Nystrom FH, Stralfors P. Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J 2007; 21: 3696-3704
17. Jia W, Wu H, Bao Y, Wang C, Lu J, Zhu J, Xiang K. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab 2007; 92: 3224-3229
18. Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Schleicher E, Fritsche A, Haring HU. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 2007; 30: 1173-1178
19. von Eynatten M, Lepper PM, Liu D, Lang K, Baumann M, Nawroth PP, Bierhaus A, Dugi KA, Heemann U, Allolio B, Humpert PM. Retinol-binding protein 4 is associated with components of the metabolic syndrome, but not with insulin resistance, in men with type 2 diabetes or coronary artery disease. Diabetologia 2007; 50: 1930-1937
20. Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J Clin Endocrinol Metab 2007; 92: 2712-2719
21. Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB, Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345: 1291-1297
22. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., Jones DW, Materson BJ, Oparil S, Wright JT, Jr., Roccella EJ. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560-2572
23. Hsia J, Margolis KL, Eaton CB, Wenger NK, Allison M, Wu L, LaCroix AZ, Black HR. Prehypertension and cardiovascular disease risk in the Women's Health Initiative. Circulation 2007; 115: 855-860
24. Player MS, Mainous AG, 3rd, Diaz VA, Everett CJ. Prehypertension and insulin resistance in a nationally representative adult population. J Clin Hypertens (Greenwich) 2007; 9: 424-429
25. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet 2001; 358: 1682-1686
26. Mullican DR, Lorenzo C, Haffner SM. Is prehypertension a risk factor for the development of type 2 diabetes mellitus? Diabetes Care 2009; 32: 1870-1872
27. Manios E, Tsivgoulis G, Koroboki E, Stamatelopoulos K, Papamichael C, Toumanidis S, Stamboulis E, Vemmos K, Zakopoulos N. Impact of prehypertension on common carotid artery intima-media thickness and left ventricular mass. Stroke 2009; 40: 1515-1518
28. Toikka JO, Laine H, Ahotupa M, Haapanen A, Viikari JS, Hartiala JJ, Raitakari OT. Increased arterial intima-media thickness and in vivo LDL oxidation in young men with borderline hypertension. Hypertension 2000; 36: 929-933
29. Toprak A, Wang H, Chen W, Paul T, Ruan L, Srinivasan S, Berenson G. Prehypertension and black-white contrasts in cardiovascular risk in young adults: Bogalusa Heart Study. J Hypertens 2009; 27: 243-250
30. Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R. Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 2007; 116: 2809-2817
31. Sheu WH, Lee WJ, Chen YT. High plasma leptin concentrations in hypertensive men but not in hypertensive women. J Hypertens 1999; 17: 1289-1295
32. Beltowski J. Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 2006; 24: 789-801
33. Adamczak M, Wiecek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens 2003; 16: 72-75
34. Agata J, Masuda A, Takada M, Higashiura K, Murakami H, Miyazaki Y, Shimamoto K. High plasma immunoreactive leptin level in essential hypertension. Am J Hypertens 1997; 10: 1171-1174
35. Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH, Ong LH, Tam S, Tan KC, Janus ED, Lam TH, Lam KS. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension 2007; 49: 1455-1461
36. Papadopoulos DP, Makris TK, Krespi PG, Poulakou M, Stavroulakis G, Hatzizacharias AN, Perrea D, Votteas VV. Adiponectin and resistin plasma levels in healthy individuals with prehypertension. J Clin Hypertens (Greenwich) 2005; 7: 729-733
37. Papadopoulos DP, Makris TK, Krespi PG, Poulakou M, Paizis IA, Hatzizacharias AN, Perrea D, Votteas VV. Human soluble leptin receptor number in healthy normotensive individuals with high normal blood pressure. Am J Hypertens 2005; 18: 1001-1004
38. Mallat Z, Simon T, Benessiano J, Clement K, Taleb S, Wareham NJ, Luben R, Khaw KT, Tedgui A, Boekholdt SM. Retinol-binding protein 4 and prediction of incident coronary events in healthy men and women. J Clin Endocrinol Metab 2009; 94: 255-260
39. Ingelsson E, Sundstrom J, Melhus H, Michaelsson K, Berne C, Vasan RS, Riserus U, Blomhoff R, Lind L, Arnlov J. Circulating retinol-binding protein 4, cardiovascular risk factors and prevalent cardiovascular disease in elderly. Atherosclerosis 2009; 206: 239-244
40. Ingelsson E, Lind L. Circulating retinol-binding protein 4 and subclinical cardiovascular disease in the elderly. Diabetes Care 2009; 32: 733-735
41. Solini A, Santini E, Madec S, Rossi C, Muscelli E. Retinol-binding protein-4 in women with untreated essential hypertension. Am J Hypertens 2009; 22: 1001-1006.
42. Raila J, Henze A, Spranger J, Mohlig M, Pfeiffer AF, Schweigert FJ. Microalbuminuria is a major determinant of elevated plasma retinol-binding protein 4 in type 2 diabetic patients. Kidney Int 2007; 72: 505-511
43. Yao-Borengasser A, Varma V, Bodles AM, Rasouli N, Phanavanh B, Lee MJ, Starks T, Kern LM, Spencer HJ, 3rd, Rashidi AA, McGehee RE, Jr., Fried SK, Kern PA. Retinol binding protein 4 expression in humans: relationship to insulin resistance, inflammation, and response to pioglitazone. J Clin Endocrinol Metab 2007; 92: 2590-2597
44. Ix JH, Chertow GM, Shlipak MG, Brandenburg VM, Ketteler M, Whooley MA. Fetuin-A and kidney function in persons with coronary artery disease--data from the Heart and Soul Study. Nephrol Dial Transplant 2006; 21: 2144-2151
45. Denecke B, Graber S, Schafer C, Heiss A, Woltje M, Jahnen-Dechent W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem J 2003; 376: 135-145
46. Auberger P, Falquerho L, Contreres JO, Pages G, Le Cam G, Rossi B, Le Cam A. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell 1989; 58: 631-640
47. Mathews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang X, Goustin AS, Jen KL, Charron MJ, Jahnen-Dechent W, Grunberger G. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 2002; 51: 2450-2458
48. Hennige AM, Staiger H, Wicke C, Machicao F, Fritsche A, Haring HU, Stefan N. Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One 2008; 3: e1765
49. Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Krober SM, Machicao F, Fritsche A, Haring HU. Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 2006; 29: 853-857
50. Ix JH, Shlipak MG, Brandenburg VM, Ali S, Ketteler M, Whooley MA. Association between human fetuin-A and the metabolic syndrome: data from the Heart and Soul Study. Circulation 2006; 113: 1760-1767
51. Kalabay L, Jakab L, Prohaszka Z, Fust G, Benko Z, Telegdy L, Lorincz Z, Zavodszky P, Arnaud P, Fekete B. Human fetuin/alpha2HS-glycoprotein level as a novel indicator of liver cell function and short-term mortality in patients with liver cirrhosis and liver cancer. Eur J Gastroenterol Hepatol 2002; 14: 389-394
52. Ix JH, Wassel CL, Kanaya AM, Vittinghoff E, Johnson KC, Koster A, Cauley JA, Harris TB, Cummings SR, Shlipak MG. Fetuin-A and incident diabetes mellitus in older persons. JAMA 2008; 300: 182-188
53. Stefan N, Fritsche A, Weikert C, Boeing H, Joost HG, Haring HU, Schulze MB. Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes 2008; 57: 2762-2767
54. Siddiq A, Lepretre F, Hercberg S, Froguel P, Gibson F. A synonymous coding polymorphism in the alpha2-Heremans-schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes 2005; 54: 2477-2481
55. Rittig K, Thamer C, Haupt A, Machann J, Peter A, Balletshofer B, Fritsche A, Haring HU, Stefan N. High plasma fetuin-A is associated with increased carotid intima-media thickness in a middle-aged population. Atherosclerosis 2009; 207: 341-342
56. Weikert C, Stefan N, Schulze MB, Pischon T, Berger K, Joost HG, Haring HU, Boeing H, Fritsche A. Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation 2008; 118: 2555-2562
57. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129: 113-121
58. Yoshiike N, Lwin H. Epidemiological aspects of obesity and NASH/NAFLD in Japan. Hepatol Res 2005; 33: 77-82
59. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288: E462-468
60. Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 2007; 30: 734-743
61. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 2003; 37: 1202-1219
62. Hanley AJ, Williams K, Festa A, Wagenknecht LE, D'Agostino RB, Jr., Kempf J, Zinman B, Haffner SM. Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2004; 53: 2623-2632
63. Younossi ZM, Gramlich T, Matteoni CA, Boparai N, McCullough AJ. Nonalcoholic fatty liver disease in patients with type 2 diabetes. Clin Gastroenterol Hepatol 2004; 2: 262-265
64. Targher G, Bertolini L, Poli F, Rodella S, Scala L, Tessari R, Zenari L, Falezza G. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 2005; 54: 3541-3546
65. Adams LA, Harmsen S, St Sauver JL, Charatcharoenwitthaya P, Enders FB, Therneau T, Angulo P. Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am J Gastroenterol 2010; 105: 1567-1573
66. Targher G, Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 2007; 191: 235-240
67. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291: 1730-1737
68. Labat C, Lacolley P, Lajemi M, de Gasparo M, Safar ME, Benetos A. Effects of valsartan on mechanical properties of the carotid artery in spontaneously hypertensive rats under high-salt diet. Hypertension 2001; 38: 439-443
69. Schaffer EM, Ritter SJ, Smith JE. N-(4-hydroxyphenyl)retinamide (fenretinide) induces retinol-binding protein secretion from liver and accumulation in the kidneys in rats. J Nutr 1993; 123: 1497-1503
70. WHO. The Asia Pacific perspective: Redefining obesity and its treatment. WHO: Geneva, 2000.:
71. Li CL, Tsai ST, Chou P. Relative role of insulin resistance and beta-cell dysfunction in the progression to type 2 diabetes--The Kinmen Study. Diabetes Res Clin Pract 2003; 59: 225-232
72. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419
73. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502
74. Zemancikova A, Torok J. Effect of chronic nifedipine treatment on blood pressure and adrenergic responses of isolated mesenteric artery in young rats with developing spontaneous hypertension. Physiol Res 2009; 58: 921-925
75. Berni R, Formelli F. In vitro interaction of fenretinide with plasma retinol-binding protein and its functional consequences. FEBS Lett 1992; 308: 43-45
76. Swislocki A, Tsuzuki A. Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat. Am J Med Sci 1993; 306: 282-286
77. Rao RH. Insulin resistance in spontaneously hypertensive rats. Difference in interpretation based on insulin infusion rate or on plasma insulin in glucose clamp studies. Diabetes 1993; 42: 1364-1371
78. Bader S, Scholz R, Kellerer M, Tippmer S, Rett K, Mathaei S, Freund P, Haring HU. Normal insulin receptor tyrosine kinase activity and glucose transporter (GLUT 4) levels in the skeletal muscle of hyperinsulinaemic hypertensive rats. Diabetologia 1992; 35: 712-718
79. Swislocki AL, Goodman MN, Khuu DT, Fann KY. Insulin resistance and hypertension: in vivo and in vitro insulin action in skeletal muscle in spontaneously hypertensive and Wistar-Kyoto rats. Am J Hypertens 1997; 10: 1159-1164
80. Kahn CR, Saad MJ. Alterations in insulin receptor and substrate phosphorylation in hypertensive rats. J Am Soc Nephrol 1992; 3: S69-77
81. Reaven GM, Chang H. Relationship between blood pressure, plasma insulin and triglyceride concentration, and insulin action in spontaneous hypertensive and Wistar-Kyoto rats. Am J Hypertens 1991; 4: 34-38
82. Zanardi S, Serrano D, Argusti A, Barile M, Puntoni M, Decensi A. Clinical trials with retinoids for breast cancer chemoprevention. Endocr Relat Cancer 2006; 13: 51-68
83. Camerini T, Mariani L, De Palo G, Marubini E, Di Mauro MG, Decensi A, Costa A, Veronesi U. Safety of the synthetic retinoid fenretinide: long-term results from a controlled clinical trial for the prevention of contralateral breast cancer. J Clin Oncol 2001; 19: 1664-1670
84. Harris G, Ghazallah RA, Nascene D, Wuertz B, Ondrey FG. PPAR activation and decreased proliferation in oral carcinoma cells with 4-HPR. Otolaryngol Head Neck Surg 2005; 133: 695-701
85. Potenza MA, Marasciulo FL, Tarquinio M, Quon MJ, Montagnani M. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance. Diabetes 2006; 55: 3594-3603
86. Preitner F, Mody N, Graham TE, Peroni OD, Kahn BB. Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. Am J Physiol Endocrinol Metab 2009; 297: E1420-1429
87. Chan P, Wong KL, Liu IM, Tzeng TF, Yang TL, Cheng JT. Antihyperglycemic action of angiotensin II receptor antagonist, valsartan, in streptozotocin-induced diabetic rats. J Hypertens 2003; 21: 761-769
88. Benndorf RA, Rudolph T, Appel D, Schwedhelm E, Maas R, Schulze F, Silberhorn E, Boger RH. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Metabolism 2006; 55: 1159-1164
89. Tomono Y, Iwai M, Inaba S, Mogi M, Horiuchi M. Blockade of AT1 receptor improves adipocyte differentiation in atherosclerotic and diabetic models. Am J Hypertens 2008; 21: 206-212
90. Erbe DV, Gartrell K, Zhang YL, Suri V, Kirincich SJ, Will S, Perreault M, Wang S, Tobin JF. Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists. Vascul Pharmacol 2006; 45: 154-162
91. Lee JM, Kim JH, Son HS, Hong EG, Yu JM, Han KA, Min KW, Chang SA. Valsartan increases circulating adiponectin levels without changing HOMA-IR in patients with type 2 diabetes mellitus and hypertension. J Int Med Res 2010; 38: 234-241
92. Makita S, Abiko A, Naganuma Y, Moriai Y, Nakamura M. Potential effects of angiotensin II receptor blockers on glucose tolerance and adiponectin levels in hypertensive patients. Cardiovasc Drugs Ther 2007; 21: 317-318
93. Ozaki N, Nomura Y, Sobajima H, Kondo K, Oiso Y. Comparison of the effects of three angiotensin II receptor type 1 blockers on metabolic parameters in hypertensive patients with type 2 diabetes mellitus. Eur J Intern Med 2010; 21: 236-239
94. Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Nunemaker CS. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension 2010; 55: 715-721
95. Younis F, Stern N, Limor R, Oron Y, Zangen S, Rosenthal T. Telmisartan ameliorates hyperglycemia and metabolic profile in nonobese Cohen-Rosenthal diabetic hypertensive rats via peroxisome proliferator activator receptor-gamma activation. Metabolism 2010; 59: 1200-1209
96. Kurtz TW, Pravenec M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system. J Hypertens 2004; 22: 2253-2261
97. Pscherer S, Heemann U, Frank H. Effect of Renin-Angiotensin system blockade on insulin resistance and inflammatory parameters in patients with impaired glucose tolerance. Diabetes Care 2010; 33: 914-919
98. Lee DC, Lee JW, Im JA. Association of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents. Metabolism 2007; 56: 327-331
99. Kloting N, Graham TE, Berndt J, Kralisch S, Kovacs P, Wason CJ, Fasshauer M, Schon MR, Stumvoll M, Bluher M, Kahn BB. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 2007; 6: 79-87
100. Tamori Y, Sakaue H, Kasuga M. RBP4, an unexpected adipokine. Nat Med 2006; 12: 30; discussion 31
101. Janke J, Engeli S, Boschmann M, Adams F, Bohnke J, Luft FC, Sharma AM, Jordan J. Retinol-binding protein 4 in human obesity. Diabetes 2006; 55: 2805-2810
102. Sharma AM. Is there a rationale for angiotensin blockade in the management of obesity hypertension? Hypertension 2004; 44: 12-19
103. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 2006; 48: 787-796
104. Cabre A, Lazaro I, Girona J, Manzanares J, Marimon F, Plana N, Heras M, Masana L. Retinol-binding protein 4 as a plasma biomarker of renal dysfunction and cardiovascular disease in type 2 diabetes. J Intern Med 2007; 262: 496-503
105. Henze A, Frey SK, Raila J, Tepel M, Scholze A, Pfeiffer AF, Weickert MO, Spranger J, Schweigert FJ. Evidence that kidney function but not type 2 diabetes determines retinol-binding protein 4 serum levels. Diabetes 2008; 57: 3323-3326
106. Ziegelmeier M, Bachmann A, Seeger J, Lossner U, Kratzsch J, Bluher M, Stumvoll M, Fasshauer M. Serum levels of adipokine retinol-binding protein-4 in relation to renal function. Diabetes Care 2007; 30: 2588-2592
107. Bernard A, Vyskocyl A, Mahieu P, Lauwerys R. Effect of renal insufficiency on the concentration of free retinol-binding protein in urine and serum. Clin Chim Acta 1988; 171: 85-93
108. Smith FR, Goodman DS. The effects of diseases of the liver, thyroid, and kidneys on the transport of vitamin A in human plasma. J Clin Invest 1971; 50: 2426-2436
109. Abahusain MA, Wright J, Dickerson JW, de Vol EB. Retinol, alpha-tocopherol and carotenoids in diabetes. Eur J Clin Nutr 1999; 53: 630-635
110. Bang LE, Holm J, Svendsen TL. Retinol-binding protein and transferrin in urine. New markers of renal function in essential hypertension and white coat hypertension? Am J Hypertens 1996; 9: 1024-1028
111. Lin X, Braymer HD, Bray GA, York DA. Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity. Life Sci 1998; 63: 145-153
112. Reinehr T, Roth CL. Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J Clin Endocrinol Metab 2008; 93: 4479-4485
113. Mohan V, Farooq S, Deepa M, Ravikumar R, Pitchumoni CS. Prevalence of non-alcoholic fatty liver disease in urban south Indians in relation to different grades of glucose intolerance and metabolic syndrome. Diabetes Res Clin Pract 2009; 84: 84-91
114. Kantartzis K, Machann J, Schick F, Fritsche A, Haring HU, Stefan N. The impact of liver fat vs visceral fat in determining categories of prediabetes. Diabetologia 2010; 53: 882-889
115. Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol 2010; 55: 1310-1317
116. Qiao Q, Jousilahti P, Eriksson J, Tuomilehto J. Predictive properties of impaired glucose tolerance for cardiovascular risk are not explained by the development of overt diabetes during follow-up. Diabetes Care 2003; 26: 2910-2914
117. Ishibashi A, Ikeda Y, Ohguro T, Kumon Y, Yamanaka S, Takata H, Inoue M, Suehiro T, Terada Y. Serum fetuin-A is an independent marker of insulin resistance in Japanese men. J Atheroscler Thromb 2010; 17: 925-933
118. Mori K, Emoto M, Araki T, Yokoyama H, Lee E, Teramura M, Koyama H, Shoji T, Inaba M, Nishizawa Y. Effects of pioglitazone on serum fetuin-A levels in patients with type 2 diabetes mellitus. Metabolism 2008; 57: 1248-1252
119. Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51: 433-445
120. Dasgupta S, Bhattacharya S, Biswas A, Majumdar SS, Mukhopadhyay S, Ray S. NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem J 2010; 429: 451-462
121. Hofmann MA, Schiekofer S, Kanitz M, Klevesath MS, Joswig M, Lee V, Morcos M, Tritschler H, Ziegler R, Wahl P, Bierhaus A, Nawroth PP. Insufficient glycemic control increases nuclear factor-kappa B binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes. Diabetes Care 1998; 21: 1310-1316
122. Iwasaki Y, Kambayashi M, Asai M, Yoshida M, Nigawara T, Hashimoto K. High glucose alone, as well as in combination with proinflammatory cytokines, stimulates nuclear factor kappa-B-mediated transcription in hepatocytes in vitro. J Diabetes Complications 2007; 21: 56-62
123. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005; 11: 183-190
124. Targher G, Bertolini L, Rodella S, Tessari R, Zenari L, Lippi G, Arcaro G. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care 2007; 30: 2119-2121