簡易檢索 / 詳目顯示

研究生: 吳信宏
Wu, Shin-Hong
論文名稱: 改良式動態調控機制於電漿設備用阻抗匹配器之研究
Study on Modified Dynamic Tuning Mechanism for Matching Box Using in Plasma Chamber System
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 調控機制阻抗匹配L型匹配網絡射頻電漿設備
外文關鍵詞: tuning mechanism, impedance matching, L-type matching network, plasma chamber system
相關次數: 點閱:166下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係針對射頻電漿設備用阻抗匹配器,研究並改良其動態調控機制。為使電漿製程設備於操作中維持穩定且獲得最大功率轉移,須藉由阻抗匹配器調控,令等效輸入阻抗與射頻電源特性阻抗同為50Ω,即達成阻抗匹配之目的。本文對於操作頻率13.56MHz之L型匹配網絡,探討可變元件與整體等效阻抗間靈敏度關係。建立改良型阻抗匹配調控機制,對射頻信號轉換之阻抗與相位訊號判斷,優先以阻抗值50Ω調整,調控達成等效阻抗50Ω之目的。最後於MATLAB建模分析,模擬調控機制過程與阻抗變化,藉由模擬與實驗測試結果,驗證本論文阻抗匹配調控機制可行性。

    This thesis investigates and modifies the tuning mechanism for matching box using in plasma chamber system. In order to maintain the plasma chamber system operating in stable and the best power transmission, impedance matching box must be tuned so that the equivalent impedance is equal to 50 ohms. For the L-type matching network operating at 13.56 MHz, this study analyzes the sensitivity between matching network components and the overall equivalent impedance. According to the magnitude and phase of the signal of RF power, tuning reaches the equivalent impedance equal to 50 ohms, and giving priority to the 50 ohms magnitude value is the main feature of the modified tuning mechanism. Finally, simulating and experimental results show the feasibility of this tuning mechanism.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 7 1-4 論文大綱 8 第二章 動態阻抗匹配原理 9 2-1 前言 9 2-2 射頻電漿設備 9 2-2-1 放電現象 9 2-2-2 高週波電漿 10 2-2-3 低溫電漿設備應用 12 2-2-4 電漿設備等效模型 14 2-3 阻抗匹配基本原理 18 2-4 匹配網絡架構 20 第三章 阻抗匹配網絡建立與分析 22 3-1 前言 22 3-2 整體匹配網絡架構簡述 22 3-3 L型匹配網絡模型分析 23 3-3-1 L型匹配網絡架構 23 3-3-2 雙電容調整式匹配網絡架構 24 3-3-3 等效阻抗模型建立 25 3-4 阻抗匹配範圍分析 29 3-4-1 元件影響匹配負載範圍分析 29 3-4-2 Mathcad計算元件範圍分析 30 3-4-3 ADS設計匹配範圍分析 32 3-5 網絡參數調整分析 35 3-5-1 元件調整與等效阻抗影響分析 35 3-5-2 串聯電容調整影響阻抗變化 36 3-5-3 並聯電容調整影響相位變化 37 3-6 反射功率分析 39 3-6-1 散射參數分析 40 3-6-2 史密斯圓分析 43 3-6-3 品質因數Q分析 45 第四章 匹配控制流程設計 46 4-1 前言 46 4-2 控制電路規劃與流程分析 47 4-2-1 數位訊號控制器簡介 47 4-2-2 類比數位轉換器模組 48 4-2-3 PWM輸出模組 50 4-2-4 數位訊號控制器電路 50 4-2-5 匹配網絡可變元件 51 4-2-6 系統控制器程式規劃 52 4-2-7 系統控制器程式改良 56 4-3 步進馬達驅動電路規劃 58 4-3-1 步進馬達驅動電路簡介 58 4-3-2 步進馬達激磁選擇 59 4-3-3 步進馬達驅動電路設計 60 4-4 動態阻抗匹配網絡設計流程 61 第五章 系統模擬與實驗結果 64 5-1 前言 64 5-2 MATLAB模擬調控機制 64 5-2-1 鎖定電容範圍模擬 64 5-2-2 高電感性負載模擬 66 5-2-3 改良型實部阻抗調控機制模擬 67 5-3 阻抗匹配實驗與量測結果 69 第六章 結論與未來研究方向 74 6-1 結論 74 6-2 未來研究方向 75 參考文獻 76

    [1] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with intersymbol interference,” IEEE Trans. Commun., vol. 20, no. 4, pp. 774-780, Aug. 1972.
    [2] Z. Chen, “Impedance matching for one atmosphere uniform glow discharge plasma (OAUGDP) reactors,” IEEE Trans. Plasma Sci., vol. 30, no. 5, pp. 1922-1930, Oct. 2002.
    [3] K. Bera, S. Kuhn, C. A. Chen, and P. Vitello, “Plasma impedance in a narrow gap capacitively coupled RF discharge,” IEEE Trans. Plasma Sci., vol. 30, no. 1, pp. 144-145, Feb. 2002.
    [4] L. Qi, S, Jingzhao, and F. Zhenghe, “Adaptive impedance matching in power line communication,” in Proc. IEEE ICMMT (Microwave and Millimeter Wave Technology), 2004, Beijing, pp. 887-890.
    [5] M. Thompson and J. K. Fidler, “Determination of the impedance matching domain of impedance matching networks,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 10, pp. 2098-2106, Oct. 2004.
    [6] P. V. Nikitin, K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez and H. Heinrich, “Power reflection coefficient analysis for complex impedances in RFID tag design,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 9, pp. 2721-2725, Sep. 2005.
    [7] F. Meng, A. V. bezooijen, and R. Mahmoudu, “A mismatch detector for adaptive antenna impedance matching,” in Proc. IEEE MC (Microwave Conference), 2006, Manchester, pp. 1457-1460.
    [8] O. H. Karabey, Y. Zheng, A. Gaebler, F. Goelden and R. Jakoby, “A synthesis technique for multiband tunable impedance matching networks with optimized matching domain,” in Proc. IEEE GMC (German Microwave Conference), 2009, Munich, pp. 1-4.
    [9] B. Mindan and L. Hong, “The analysis of impedance matching problem in RF circuit design,” in Proc. IEEE IFITA (Information Technology and Applications), 2010, Kunming, pp. 350-353.
    [10] B. Kim, S. Uno, and K. Nakazato, “13.56 MHz-RFID biosensor with on-chip spiral inductor,” in Proc. IEEE ESciNano (Enabling Science and Nanotechnology), 2010, Kuala Lumpur, pp. 1-2.
    [11] F. A. Dirini, M. Mohammed, M. Mohammed, and F. Shahroury, “Low power passive RFID transponder frontend design for implantable biosensor applications,” in Proc. IEEE RFID-TA (RFID-Technologies and Applications), 2011, Sitges, pp. 56-63.
    [12] R. Whatley, T. Ranta, and D. Kelly, “CMOS based tunable matching networks for cellular handset applications,” in Proc. IEEE MTT (Microwave Symposium Digest), 2011, Baltimore, pp. 1-4.
    [13] N. J. Smith, C. C. Chen, and J. L. Volakis, “An improved topology for adaptive agile impedance tuners,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 92-95, Jan. 2013.
    [14] S. H. Abdelhalem, P. S. Gudem, and L. E. Larson, “An RF–DC converter with wide-dynamic-range input matching for power recovery applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 6, pp. 336-340, Jun. 2013.
    [15] H. M. Nemati, C. Fager, U. Gustavsson, R. Jos, and H. Zirath, “Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 5, pp. 1110-1118, May 2009.
    [16] R. P. Eguiluz, J. A. P. Martínez, R. L. Callejas, A. M. Cabrera, J. S. Pacheco, B. A. Uscanga, A. E. M. Castro, R. V. Alvarado, S. R. B. Delgado, B. G. R. Méndez, and A. P. Beneitez, “Analysis and application of a parallel e-class amplifier as RF plasma source,” IEEE Trans. Plasma Sci., vol. 38, no. 10, pp. 2840-2847, Oct. 2010.
    [17] J. Mingo, A. Valdovinos, A. Crespo, D. Navarro, and P. García, “An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 2, pp. 489-497, Feb. 2004.
    [18] J. Lee, Y. Lim, H. Ahn, J. D. Yu, and S. O. Lim, “Impedance-matched wireless power transfer systems using an arbitrary number of coils with flexible coil positioning,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1207-1210, Jul. 2014.
    [19] A. Bezooijen, M. A. Jongh, F. Straten, R. Mahmoudi, and H. M. Roermund, “Adaptive impedance-matching techniques for controlling L networks,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2, pp. 495-505, Feb. 2010.
    [20] Y. Tan, Y. Sun, and D. Lauder, “Automatic impedance matching and antenna tuning using quantum genetic algorithms for wireless and mobile communications,” IET Microw. Antennas Propag., vol. 7, no. 8, pp. 693-700, Jun. 2013.
    [21] D. B. Ilić, “Impedance measurement as a diagnostic for plasma reactors,” Rev. Sci. Instrum., vol. 52, no. 10, pp. 1542-1545, 1981.
    [22] A. J. van Roosmalen, “Plasma parameter estimation from rf impedance measurements in a dry etching system,” Appl. Phys. Lett., vol. 42, no. 5, pp. 416-418, 1983.
    [23] M. J. Kushner, “Distribution of ion energies incident on electrodes in capacitively coupled rf discharges,” J. Appl. Phys., vol. 58, no. 11, pp. 4024-4031, 1985.
    [24] B. E. Thompson, K. D. Allen, A. D. Richards, and H. H. Sawin, “Ion bombardment energy distributions in radio‐frequency glow‐discharge systems,” J. Appl. Phys., vol. 59, no. 6, pp. 1890-1903, 1986.
    [25] C. Beneking, “Power dissipation in capacitively coupled rf discharges,” J. Appl. Phys., vol. 68, no. 9, pp. 4461-4473, 1990.
    [26] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “An experimental system for symmetric capacitive rf discharge studies,” Rev. Sci. Instrum., vol. 61, no. 9, pp. 2401-2406, 1990.
    [27] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “Electrical characteristics of parallel-plate RF discharges in argon,” IEEE Trans. Plasma Sci., vol. 19, no. 4, pp. 660-676, Aug. 1991.
    [28] J. S. Logan, N. M. Mazza, and P. D. Davidse, “Electrical characterization of radio-frequency sputtering gas discharge,” J. Vac. Sci. Technol., vol. 6, no. 1, pp. 120-123, 1969.
    [29] J. S. Logan, J. H. Keller, and R. G. Simmons, “The rf glow‐discharge sputtering model,” J. Vac. Sci. Technol., vol. 14, no. 1, pp. 92-97, 1977.
    [30] V. A. Godyak, R. B. Piejak, and N. Sternberg, “A comparison of RF electrode sheath models,” IEEE Trans. Plasma Sci., vol. 21, no. 4, pp. 378-382, Aug. 1993.
    [31] M. Klick, “Nonlinearity of the radio‐frequency sheath,” J. Appl. Phys., vol. 79, no. 7, pp. 3445-3452, 1996.
    [32] V. A. Godyak and N. Sternberg, “Dynamic model of the electrode sheaths in symmetrically driven rf discharges,” Phys. Rev. A, vol. 42, no. 4, pp. 2299-2312, Aug. 1996.
    [33] M. M. Turner, “Pressure heating of electrons in capacitively coupled rf discharges,” Phys. Rev. Lett., vol. 75, no. 7, pp. 1312-1315, Aug. 1995.
    [34] N. Spiliopoulos, D. Mataras, and D. E. Rapakoulias, “Power dissipation and impedance measurements in radio‐frequency discharges,” J. Vac. Sci. Technol. A, vol. 14, no. 5, pp. 2757-2765, 1996.
    [35] 巫尚霖,電感式高密度電漿源之研製與量測分析,國立清華大學工程與系統科學系碩士論文,1997年。
    [36] 蔡世哲,大面積電感式電漿源之研製與特性量測,國立清華大學工程與系統科學系碩士論文,1998年。
    [37] 邱文志,電漿輔助化學氣相沉積設備之射頻阻抗匹配網路的模型建立與控制器設計,國立交通大學機械工程系所碩士論文,2006年。
    [38] 鄒居樺,RF濺鍍阻抗匹配最佳化之研究,國立中山大學電機工程學系碩士論文,2007年。
    [39] “Navigator and Navigator II digital matching network,” Advanced Energy Industries, Inc., U. S. A. [Online]. Available: http://www. advanced-energy.com/en/Matching_Networks.html
    [40] “MWD-25LD, 13.56MHz, 2.5kW impedance matching network,” MKS Instruments, Inc., U. S. A. [Online]. Available: http://www.mksinst. com/product/Product.aspx?ProductID=323
    [41] “PFM matchboxes,” TRUMPF Hüttinger Co., Germany. [Online]. Available: http://www.trumpf-huettinger.com/en/products/plasma-excit ation/system-components/pfm-matchboxes.html
    [42] “RF match,” DAIHEN Co., Japan. [Online]. Available: http://www. daihen-ac.com/products/lists/4
    [43] D. H. Cotter and S. O. Harnett, “Tune range limiter,” U.S. Patent 7863996 B2, Jan. 4, 2011.
    [44] C. Zhang, L. Wong, K. Ramaswamy, J. P. Cruse, and H. Hanawa, “Plasma reactor with RF generator and automatic impedance match with minimum reflected power-seeking control,” U.S. Patent 20110009999 A1, Jan. 13, 2011.
    [45] H. Matoba, R. Tanaka, S. Omae, and S. Amadatsu, “Plasma processing system,” U.S. Patent 7489145 B2, Feb. 10, 2009.
    [46] S. Harnett, “Fuzzy logic tuning of RF matching network,” U.S. Patent 5842154 A, Nov. 24, 1998.
    [47] A. M. Howald, “Methods for controlling an RF matching network,” U.S. Patent 6259334 B1, Jul. 10, 2001.
    [48] 蓋瑞 M 蘭森。2009。電壓/電流探針測試裝置用之方法與設備。中華民國發明專利第200933183號。
    [49] K. Kondo, D. Matsuno, E. Ibaraki, and K. Itadani, “Impendence matching network,” U.S. Patent 6621372, 2003.
    [50] T. J. Blackburn and C. C. Mason, “Impendence matching network with termination of secondary RF frequencies,” U.S. Patent 6888313, 2005.
    [51] Y. Nishimori, S. Omae, M. Mito, Y. Ishida, and K. Itadani, “Impedance matching device provide with reactance-impedance table,” U.S. Patent 6946847, 2005.
    [52] G. J. V. Zyl and G. G. Gurov, “Impendence matching network using BJT switches in variable-reactance circuits,” U.S. Patent 8416008, 2012.
    [53] C.C. Mason, “High frequency solid state switching for impedance matching,” U.S. Patent 8436643, 2013.
    [54] C. E. Theall, “Automatic impedance matching between source and load,” U.S. Patent 4375051 A, Feb. 10, 1983.
    [55] A. R. A. Keane and S. E. Hauer, “Automatic impedance matching apparatus and method,” U.S. Patent 5195045 A, Mar. 16, 1993.
    [56] B. A. Flugstad, Q. Ling, E. R. Kolbe, J. H. Wells, Y. Zhao, and J. W. Park, “Variable frequency automated capacitive radio frequency dielectric heating system,” U.S. Patent 6784405 B2, Aug. 31, 2004.
    [57] R. R. Mett, R. D. Greenway, G. Bilek, and A. Joshi, “Impedance matching network,” U.S. Patent 5952896 A, Sep. 14, 1996.
    [58] V. Todorow, J. Holland, and N. Gami, “Method and apparatus for tuning an RF matching network in a plasma enhanced semiconductor wafer processing system,” U.S. Patent 6818562 B2, Nov. 16, 2004.
    [59] A. Papanide, F. W. Hauer, L. A. Newman, T. V. Hennessey, C. J. Shackleton, J. Fontanella, and G. Hua, “RF shielded, series inductor, high RF power impedance matching interconnector for CO2 slab laser,” U.S. Patent 7540779B2, Jun. 2, 2009.
    [60] G. J. L. Boulsse and J. E. Morgan, “Circuit and method for impedance matching,” U.S. Patent 6414562 B1, Jul. 2, 2002.
    [61] J. R. Roth, “Industrial Plasma Engineering: Principles,” vol.1 ,1995.
    [62] 陳熹棣,高週波基礎理論與應用,全華科技圖書股份有限公司,1993年。
    [63] 張家豪,300mm晶圓電感式電漿蝕刻機台之研製與電漿特性量測分析,國立清華大學工程與系統科學系碩士論文,2000年。
    [64] D. Rémi, T. Anne-Lise, and S. Nadjib, “A heat flux microsensor for direct measurements in plasma surface interactions,” in Microsensor, Prof. lgor Minin, Ed. Rijeka, HR: InTech, 2011, pp. 87-108.
    [65] Oleg A. Popov, “High Density Plasma Sources: Design, Physics and Performance, ” 1995.
    [66] 李孟儒,RF電漿源的阻抗匹配研究,國立東華大學電機學系碩士論文,2002年。
    [67] R. C. H. Li, “Impedance matching in a narrow-band case,” in RF Circuit Design, 2th ed. New York: Wiley, 2012,ch. 10, pp. 377-446.
    [68] S. R. Pennock and P. R. Shepherd, “Microwave Engineering with Wireless Applications”,1998
    [69] 黃進芳,微波工程,五南圖書出版股份有限公司,2005年。
    [70] 袁帝文、王岳華、謝孟翰、王弘毅,高頻通訊電路設計,高立圖書有限公司,2001年。
    [71] 曾百由,dsPIC數位訊號控制器原理與應用MPLAB C30開發實務,宏友圖書開發股份有限公司,2007年。
    [72] dsPIC30F4011/4012 Data Sheet High Performance Digital Signal Controllers, Microchip inc., 2005.
    [73] DRV8818 Data Sheet Stepper Motor Controller IC, Texas Instruments inc., 2011-2013.
    [74] 杜育姍,新型射頻功率阻抗匹配狀態偵測電路於電漿設備用阻抗匹配器之研究,國立成功大學電機工程學系碩士論文,2015年。

    下載圖示 校內:2020-08-06公開
    校外:2020-08-06公開
    QR CODE