研究生: |
謝秉孝 Hsieh, Ping-Hsiao |
---|---|
論文名稱: |
穿戴式失智銀髮族生理評估與遠端長期照護系統 Wearable Physiology Evaluation and Remote Long-Term Care System for Elder People with Dementia |
指導教授: |
林志隆
Lin, Chih-Lung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 失智症 、穿戴式裝置 、嵌入式系統 、健康照護 、生理資訊量測 |
外文關鍵詞: | Dementia, Wearable device, Embedded system, Health care, Physiological signal |
相關次數: | 點閱:76 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人口老化為目前台灣所面臨的一個重要議題,大量高齡人口將給社會帶來沉重的負擔。老年人口的上升連帶產生了醫護人力不足以及失智症照護等問題,如何應用近年廣泛被討論之穿戴式裝置來達成有效率的醫療服務是本論文的目標。
當老人發生意外或急性病症時,及時通報與救助是相當關鍵的。目前針對老年人的照護之最有效的方式多為聘請看護,但全天看護的支出對於大部分一般家庭為一龐大的負擔,因此找出除了全天候看護以外之照護方式是極為重要的議題。針對上述所提出之問題,本論文設計一眼鏡型穿戴式裝置,能夠即時監控穿戴者之心跳,體溫以及姿態等生理數據,回傳給醫療院所之伺服器端,並在發生異常狀態能夠及時通報相關醫療單位,藉此避免老人發生延誤醫療的情形。另外,本論文基於上述功能也同時開發相對應之伺服器端程式及介面,讓使用者或醫療單位可以遠端連線並管理本論文所提出之穿戴式裝置,並收集老人生理數據及活動軌跡。此系統之服務及功能透過近年廣泛應用之Wi-Fi無線網路進行不同功能之應用,由於其架設成本較為低廉,台灣各地公用基地台的設立已使戶外為一Wi-Fi高覆蓋率之環境,而本系統即可透過Wi-Fi網路定位之功能追蹤長輩於戶外環境之位置,並在伺服器端設立最大活動範圍以防止長輩走失之情況;本系統同時利用Wi-Fi電波室內定位技術,可透過長時間記錄長輩於室內的位置來建立平日生活習慣之軌跡,透過記錄每日作息的情況,即可記錄失智症發作時所產生的作息異常以提供給精神科醫師進行進一步的診斷,藉此找出失智症前期徵兆並提供早期治療以延緩病情惡化。
本論文所開發之老人生理監控功能之穿戴式裝置量測數據與市售產品比較,心跳量測誤差小於3.58%且血氧濃度誤差小於1.74%,同時具備紀錄失智症行為功能可在將來作為老人長期照護與失智症病理分析用途,將對老年醫學帶來莫大的助益,並且讓老人有更加舒適且安全的生活。
This work presents a wearable physiology evaluation and remote long-term care system embedded in a glasses frame. This wearable device has ability to monitor user's physiology data including heart rate, blood oxygen level, body temperature and body motion. Proposed system use Wireless LAN (WLAN) network to establish connection between wearable device and PC-based data server. Data server can receive and analysis data from wearable device, and provide immediately notification to medical personnel when abnormal data is detected. Proposed system can also record user's daily behavior by using WLAN indoor positioning, such data can be used to analysis early syndrome of dementia. When device users leave house, this system can acquire user's current position by using WLAN outdoor positioning to prevent user from getting lost. The proposed system has heart rate error within 3.58% and blood oxygen saturation error within 1.74%. Hence, the proposed wearable system can benefit medical research of the elderly, providing elders with a comfortable and safe life.
[1] Ministry of the Health and Welfare, Department of Statistics, http://www.mohw.gov.tw
[2] Council for Economic Planning and Development, Executive Yuan, http://iknow.stpi.narl.org.tw
[3] National Development Council, http://www.ndc.gov.tw
[4] Taiwan Alzheimer Disease Association, http://www.tada2002.org.tw
[5] Wearable Gadgets Are Still Not Getting The Attention They Deserve — Here's Why They Will Create A Massive New Market, http://www.businessinsider.com
[6] A. J. Casson, D. C. Yates, S. J. M. Smith, J. S. Duncan, “Wearable electroencephalography,” IEEE Engineering in Medicine and Biology Magazine, vol. 29,no. 3, pp. 44-56, 2010.
[7] S. Izumi, K. Yamashita, M. Nakano, H. Kawaguchi, H. Kimura, K. Marumoto, T. Fuchikami, Y. Fujimori, H. Nakajima, T. Shiga, M. Yoshimoto, “A wearable healthcare system with a 13.7 μA noise tolerant ECG processor,” IEEE Trans. Biomedical Circuits and Systems, vol. 9, no. 5, pp. 733-742, 2015.
[8] D.Prattichizzo, F. Chinello, C. Pacchierotti, M. Malvezzi, “Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback,” IEEE Trans. Haptics, vol. 6, no. 4, pp. 506-516, 2013.
[9] F. Lorussi, W. Rocchia, E. P. Scilingo, A. Tognetti, D. D. Rossi, “Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture,” IEEE Sensors Journal, vol. 4, no. 6, pp. 807-818, 2004.
[10] L. Atallah, B. Lo, R. King, G. Z. Yang, “Sensor positioning for activity recognition using wearable accelerometers,” IEEE Trans. Biomedical Circuits and Systems, vol. 5, no. 4, pp. 320-329, 2011.
[11] Y. J. Hong, I. J. Kim, S. C. Ahn, H. G. Kim, “Activity recognition using wearable sensors for elder care,” Second International Conference on Future Generation Communication and Networking, vol. 2, pp. 302-305, 2008.
[12] R. K. Megalingam, G. Pocklassery, V. Jayakrishnan, G. Mourya, A. A. Thulasi, “Smartphone based continuous monitoring system for home-bound elders and patients,” International Conference on Communications and Signal Processing, pp. 1173-1177, 2014.
[13] M. J. Woyshville, J. R. Calabrese, “Community screening for dementia: The Mini Mental State Exam (MMSE) and modified Mini-Mental State Exam (3MS) compared,” Journal of Clinical Epidemiology, vol. 50, no.4, pp. 377-383, 1997.
[14] T. N. Tombaugh, N. J. McIntyre, “The mini-mental state examination: a comprehensive review,” Journal of the American Geriatrics Society, vol. 40, no. 9, pp. 922–935, 1992.
[15] G. T. Henderson, E. C. Ifeachor, “Prospects for routine detection of dementia using the fractal dimension of the human electroencephalogram,” International Conference on Medical Signal and Information Processing, pp. 284-289, 2000.
[16] R. Alattas, B. D. Barkana, “A comparative study of brain volume changes in Alzheimer’s disease using MRI scans,” Systems, Applications and Technology Conference, pp. 1-6, 2015.
[17] Alzheimer's association, http://www.alz.org
[18] W. Sansrimahachai, “Stream-based wandering monitoring system for elderly people with dementia,” International Symposium on Communications and Information Technologies, pp. 1-4, 2015.
[19] D. Naranjo-Hernandez, L. M. Roa, J. Reina-Tosina, M. A. Estudillo-Valderrama, “SoM: a smart sensor for human activity monitoring and assisted healthy ageing,” IEEE Trans. Biomedical Engineering, vol. 59, no. 11, pp. 3177-3184, 2012.
[20] V. Stanford, “Using pervasive computing to deliver elder care,” IEEE Pervasive Computing, vol. 1, no. 1, pp. 10-13, 2002.
[21] M. Kusserow, O. Amft, G. Tröster, “Modeling arousal phases in daily living using wearable sensors,” IEEE Trans. Affective Computing, vol. 4, no.1, pp. 93-105, 2013.
[22] P. Falcone, F. Colone, A. Macera, P. Lombardo, “Two-dimensional location of moving targets within local areas using Wi-Fi-based multistatic passive radar,” IET Radar, Sonar & Navigation, vol. 8, no. 2, pp. 123-131, 2014.
[23] H. Liu, J. Yang, S. Sidhom, Y. Wang, Y. Chen, F. Ye, “Accurate Wi-Fi based localization for smartphones using peer assistance,” IEEE Trans. Mobile Computing, vol. 13, no. 10, pp. 2199-2214, 2014.
[24] W. Li, Y. Hu, X. Fu, S. Lu, D. Chen, “Cooperative positioning and tracking in disruption tolerant networks,” IEEE Trans. Parallel and Distributed Systems, vol. 26, no. 2,pp. 382-391, 2015.