簡易檢索 / 詳目顯示

研究生: 李柏誼
Li, Po-Yi
論文名稱: 以水熱法合成氧化鎵奈米柱及其紫外光感測器之研究
Investigation of Gallium Oxide Nanorods Synthesis by Hydrothermal Method and Their Ultraviolet Photodetector
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 121
中文關鍵詞: 水熱法氧化鎵奈米柱氧化鋅二氧化錫紫外光感測器
外文關鍵詞: Hydrothermal method, Gallium oxide, Nanorods, Zinc oxide, Tin dioxide, Ultraviolet photodetectors
相關次數: 點閱:89下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍沉積氧化鎵、氧化鋅及二氧化錫薄膜作為晶種層,並利用水熱法於各晶種層薄膜中進行氧化鎵奈米柱的成長,並討論各種退火溫度對其奈米柱形貌及結構的影響,以及其作為感測層,用於深紫外光感測器之特性。
    首先,利用射頻磁控濺鍍沉積氧化鎵薄膜200奈米。由於氧化鎵在300℃以上退火,會從GaOOH轉相成α-氧化鎵,在650℃以上則會轉化成最穩定的β-氧化鎵。於是我們分別將其退火溫度控制在600、700、800及900℃。透過XRD分析,確認其晶體結構成功轉相,並將其製備成深紫外光感測器。隨著退火溫度增加,感測器的光電流也隨之增加,並在700℃退火的氧化鎵薄膜得到最大1.859 × 10^-9安培的光電流,退火溫度大於800℃後,光電流和暗電流則都下降到10^-13安培左右或更小。
    接著,我們選擇以退火900℃的氧化鎵薄膜作為晶種層,以防止晶種層電流對氧化鎵奈米柱電性的影響。以水熱法在其表面成長前驅物GaOOH奈米柱,再分別以600、700、800及900℃進行退火。700℃退火下,得到最佳的β-氧化鎵奈米柱紫外光感測器,響應值為2.586×10^-7 (A/W),光暗電流比為2.883倍。於是,我們接下來也會以退火700℃的氧化鎵奈米柱成長於氧化鋅及二氧化錫晶種層上。
    氧化鋅薄膜於退火溫度600℃時有最好的結晶度及最小的晶體尺寸,這也使得其上層所成長的氧化鎵奈米棒也同時有最小的奈米棒尺寸及最高的分布密度。這項優勢也展現在其所製成的紫外光感測器中,響應值高達3.879×10^-1 (A/W)及光暗電流比4.118倍,都高於氧化鎵薄膜做為晶種層所成長出的奈米柱。
    最後,我們探討以二氧化錫薄膜做為晶種層成長氧化鎵奈米柱。透過XRD分析及SEM圖可以發現,退火400℃以上的二氧化錫薄膜,由於其晶格參數c=3.18(Å)更接近前驅物氫氧氧鎵晶格參數b=2.98(Å),二氧化錫的(200)晶面與GaOOH的(002)晶面之間良好的晶格匹配,使奈米棒能夠朝向平行c軸方向優選成長,長成較短但密度極高的奈米棒陣列,這也使其製成的紫外光感測器有著極為優異的感測性能。以未退火的二氧化錫做為晶種層的氧化鎵奈米柱紫外光感測器響應值為5.647×10^-2(A/W),光暗電流比高達348.5倍,退火400℃以上的二氧化錫做為晶種層,也都有至少69.1倍的光暗電流比,遠高於氧化鎵及氧化鋅晶種層。

    This study focuses on the synthesis of gallium oxide (Ga2O3) nanorods using a hydrothermal method on seed layers deposited via radio-frequency magnetron sputtering of Ga2O3, zinc oxide (ZnO), and tin dioxide (SnO2) thin films. We investigate the impact of different annealing temperatures on the morphology, structure, and properties of the resulting nanorods, as well as their suitability as sensing layers for deep ultraviolet photodetectors.
    Initially, Ga2O3 thin film with a thickness of 200 nanometers were deposited using radio-frequency magnetron sputtering. Ga2O3 exhibits phase transitions upon annealing, converting from amorphous to α-Ga2O3 at temperatures exceeding 300°C, and ultimately to the stable β-Ga2O3 at temperatures above 650°C. We controlled the annealing temperatures at 600°C, 700°C, 800°C, and 900°C, with X-ray diffraction (XRD) confirming successful structural phase transitions. Ultraviolet photodetectors were fabricated using these films. As the annealing temperature increased, the photodetectors exhibited elevated photocurrents, with the highest value of 1.859×10^-9 amperes obtained for Ga2O3 films annealed at 700°C. After annealing temperatures exceeded 800°C, both the photocurrent and dark current decreased to approximately 10^-13 amperes or lower.
    Subsequently, we selected Ga2O3 thin films annealed at 900°C as seed layers to minimize their impact on the electrical properties of Ga2O3 nanorods. Hydrothermal growth was employed to fabricate precursor GaOOH nanorods on the seed layer, followed by annealing at 600°C, 700°C, 800°C, and 900°C. The best results were observed for the β-Ga2O3 nanorods photodetectors annealed at 700°C, which exhibited a responsivity of 2.586×10^-7 (A/W) and a response ratio of 2.883. In our ongoing research, we plan to explore the growth of Ga2O3 nanorods on ZnO and SnO2 seed layers using the 700°C-annealed Ga2O3 nanorods as a reference.
    ZnO thin film annealed at 600°C displayed excellent crystallinity and minimal crystal size, leading to the growth of Ga2O3 nanorods with reduced dimensions and higher density. This advantage was evident in the resulting ultraviolet photodetectors, which exhibited a high responsivity of 3.879×10^-1 (A/W) and a response ratio of 4.118. These values surpassed those obtained using Ga2O3 thin film as seed layer for nanorods growth.
    Finally, we investigated the growth of Ga2O3 nanorods on SnO2 seed layer. XRD and SEM analyses revealed that SnO2 thin film annealed at temperatures exceeding 400°C exhibited a polycrystalline structure. The lattice parameters of SnO2 (c=3.18 Å) closely matched those of the precursor GaOOH (b=2.98 Å), promoting the preferential growth of nanorods along the c-axis. These formed shorter but highly dense nanorods arrays, leading to the development of exceptional ultraviolet photodetectors. Specifically, photodetectors fabricated with as-deposited SnO2 seed layer exhibited a responsivity of 5.647×10^-2 (A/W) and a remarkable response ratio of 348.5. For annealing SnO2 seed layer exceeding 400°C, the resulting Ga2O3 nanorods photodetectors exhibited a response ratio of at least 69.1, which significantly surpasses those obtained with Ga2O3 and ZnO seed layer.

    摘要 I Abstract III Content VI Table Captions X Figure Captions XII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Background of Ga2O3 material 3 1.3 Background of ZnO material 4 1.4 Background of SnO2 material 5 1.5 Overview of Ultraviolet Photodetector 5 1.6 Advantages of Ga2O3 as photodetector 7 Reference 8 Chapter 2 Relevant Theory and Experimental Equipment 12 2.1 Theory of Photodetector 12 2.1.1 Responsivity of the Photodetector 15 2.1.2 Response Ratio of the Photodetector 16 2.1.3 Rising and Recovery Time of the Photodetector 16 2.2 Experimental Apparatus 17 2.2.1 Radio-Frequency (RF) Sputtering System 17 2.2.2 E-beam Evaporator 20 2.2.3 Hydrothermal Method 22 2.2.4 X-ray Diffraction (XRD) Analysis 25 2.2.5 Scanning Electron Microscope (SEM) 28 2.2.6 Energy-dispersive X-ray Spectroscopy (EDS) 30 2.2.7 UV-VIS-NIR Spectrophotometer 31 2.2.8 Measurement System 32 Reference 33 Chapter 3 Characteristics of Ga2O3, ZnO, SnO2 Thin Film 35 3.1 Growth of Seed Layer Thin Film 35 3.2 X-ray Diffraction (XRD) Analysis 37 3.2.1 Different Annealed Temperature of Ga2O3 Thin Film 38 3.2.2 Different Annealed Temperature of ZnO Thin Film 39 3.2.3 Different Annealed Temperature of SnO2 Thin Film 41 Reference 42 Chapter 4 Characteristics of Ga2O3 Nanorods 43 4.1 Growth of Ga2O3 Nanorods by Hydrothermal Method 43 4.2 X-ray Diffraction (XRD) Analysis 49 4.2.1 Different Annealed Temperature of Ga2O3 Nanorods Growth on Ga2O3 Seed Layer 50 4.2.2 Ga2O3 Nanorods Growth on Different Annealed Temperature of ZnO Seed Layer 52 4.2.3 Ga2O3 Nanorods Growth on Different Annealed Temperature of SnO2 Seed Layer 53 4.3 Scanning Electron Microscope (SEM) Analysis 55 4.3.1 Different Annealed Temperature of Ga2O3 Nanorods Growth on Ga2O3 Seed Layer 55 4.3.2 Ga2O3 Nanorods Growth on Different Annealed Temperature of ZnO Seed Layer 59 4.3.3 Ga2O3 Nanorods Growth on Different Annealed Temperature of SnO2 Seed Layer 62 4.4 Energy-dispersive X-ray Spectroscopy (EDS) Analysis 67 4.5 Optical Characteristics 70 Reference 71 Chapter 5 The Fabrication and Characteristics of Ga2O3, ZnO, SnO2 Thin Film UV Photodetectors 73 5.1 Fabrication of Photodetectors 73 5.2 Characteristics of Ga2O3, ZnO, SnO2 Thin Film Photodetectors 75 5.2.1 Characteristics of Different Annealed Temperature of Ga2O3 Thin Film Photodetectors 75 5.2.2 Characteristics of Different Annealed Temperature of ZnO Thin Film Photodetectors 79 5.2.3 Characteristics of Different Annealed Temperature of SnO2 Thin Film Photodetectors 84 5.2.4 Time-Resolved Response of Ga2O3, ZnO, SnO2 Thin Film Photodetectors 87 Reference 91 Chapter 6 The Fabrication and Characteristics of Ga2O3 Nanorods UV Photodetectors 93 6.1 Fabrication of Photodetectors 93 6.2 Characteristics of Ga2O3 Nanorods Photodetectors 96 6.2.1 Characteristics Different Annealed Temperature of Ga2O3 Nanorods Photodetectors 96 6.2.2 Characteristics of Ga2O3 Nanorods Photodetectors Growth on Different Annealed Temperature of ZnO Seed Layer 101 6.2.3 Characteristics of Ga2O3 Nanorods Photodetectors Growth on Different Annealed Temperature of SnO2 Seed Layer 105 6.2.4 Time-Resolved Response of Ga2O3, ZnO, SnO2 Thin Film Photodetectors 110 Reference 115 Chapter 7 Conclusion and Future work 116 7.1 Conclusion 116 7.2 Future work 119 Reference 120

    [1] H.Y Chen; K.W Liu, et al. New concept ultraviolet photodetectors. Materials Today Volume 18, Number 9, November 2015
    [2] LEE, Sang-Won, et al. Low dark-current, high current-gain of PVK/ZnO nanoparticles composite-based UV photodetector by PN-heterojunction control. Sensors, 16.1: 74, 2016.
    [3] YU, J., et al. ZnO-based ultraviolet avalanche photodetectors. Journal of Physics D: Applied Physics, 46.30: 305105, 2013.
    [4] Fendler, J. H.; Meldrum, F. C. The Colloid Chemical Approach to Nanostructured Materials. Adv. Mater., 7, 607, 1995.
    [5] Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures. Chem. Mater, 9, 2544, 1997.
    [6] H.J Bae, T.H Yoo, et al. High-Aspect Ratio β-Ga2O3 Nanorods via Hydrothermal Synthesis. Nanomaterials 2018, 8(8), 594, August 2018.
    [7] Yoon, Y.B.; Han, K.I.; Kim, B.H.; Lee, I.G.; Kim, Y.H.; Kim, J.P.; Hwang, W.S. Formation of β-Ga2O3 nanofibers of sub-50 nm diameter synthesized by electrospinning method. Thin Solid Films, 2018.
    [8] Kokubun, Y.; Miura, K.; Endo, F.; Nakagomi, S. Sol-gel prepared β- Ga2O3 thin films for ultraviolet photodetectors. Appl. Phys. Lett. 2007.
    [9] Zhang, J.; Liu, Z.; Lin, C.; Lin, J. A simple method to synthesize β- Ga2O3 nanorods and their photoluminescence properties. J. Cryst. Growth, 2005.
    [10] Quan, Y.; Fang, D.; Zhang, X.; Liu, S.; Huang, K. Synthesis and characterization of gallium oxide nanowires via a hydrothermal method. Mater. Chem. Phys. 2010.
    [11] S. J. Pearton, J. Yang, P H. Cary, F. Ren, J. Kim, M J. Tadjer, M A. Mastro, Appl. Phys. Rev. 2018.
    [12] S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov, A. E. Romanov, Rev. Adv. Mater. Sci. 2016.
    [13] Feng Shi, Hengyang Qiao et al. Preparations, properties and applications of gallium oxide nanomaterials – A review, Nano Select Volume 3, Issue 2, Feb 2022.
    [14] P. H. Miller, Jr. in Proc. Intern. Conf. on Semiconducting Materials Reading (Ed.: H. K. Henisch), Butterworths, London, 1951.
    [15] H. E. Brown, Zinc Oxide Rediscovered, The New Jersey Zinc Company, New York, 1957; and Zinc Oxide Properties and Applications, Pergamon, New York, 1976.
    [16] H. Heiland, E. Mollwo, F. Stöckmann, Solid State Phys. 1959.
    [17] “Zinc Oxide—A Material for Micro- and Optoelectronic Applications”: NATO Sci. Ser. 2 2005.
    [18] C. Klingshirn, H. Priller, M. Decker, J. Brückner, H. Kalt, R. Hauschild, J. Zeller, A. Waag, A. Bakin, H. Wehmann, K. Thonke, R. Sauer, R. Kling, F. Reuss, Ch. Kirchner, Adv. Solid State Phys. 2005, 45, 261; C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, H. Kalt, Superlattices Microstruct. 2005, 38, 209; C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, H. Kalt, NATO Sci. Ser. 2, 2006.
    [19] S. Ramanathan (Ed.), Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy, Springer, New York ,2010.
    [20] A.F. McKinlay, et al. Health Phys. 87 (2), 2004.
    [21] S.D.A.M. Stephen De Mora, Enhanced UV radiation a new problem for the marine environment. vol. 10, Cambridge University Press, 2000.
    [22] S.E. Mancebo, et al. Rev. Environ. Health 29 (3), 2014.
    [23] B. Leckner, Sol. Energy 20 143–150, 1977.
    [24] H. Ferhati, F. Djeffal, A novel high-performance self-powered ultraviolet photodetector: Concept, analytical modeling and analysis Superlattices and Microstructures, Volume 112, 2017.
    [25] X.H. Xie, et al. Appl. Phys. Lett. 101 (8), 2012.
    [26] High-performance metal–semiconductor–metal UV photodetector based on spray deposited ZnO thin films Journal of Alloys and Compounds, Volume 595, 2014, pp. 55-59, S.I. Inamdar, K.Y. Rajpure, 2014.
    [27] M. Liao, et al. Appl. Phys. Lett. 90 (12) 123507, 2007.
    [28] Forat H. Alsultany, Z. Hassan, Naser M. Ahmed, A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate, Optical Materials, Volume 60, pp. 30-37, 2016.
    [29] H.Y Chen; K.W Liu, et al. New concept ultraviolet photodetectors. Materials Today Volume 18, Number 9, November 2015.
    [30] Shun Lien Chuang, Physics of Photonic Devices, 2nd Edition, illey: Hoboken, 2012.
    [31] J. Hetterich, G. Bastian, N.A. Gippius, S.G. Tikhodeev, G. von Plessen, U. Lemmer, Optimized Design of Plasmonic MSM Photodetector, IEEE Quantum Electron. 43 855-859, 2007.
    [32] X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite, Adv Funct Mater. 24 7373-7380, 2014.
    [33] Morey, G.W.; Niggli, P. The hydrothermal formation of silicates, a review. J. Am. Chem. Soc., 35, 1086–1130, 1913.
    [34] Yoshimura, M.; Suda, H. Hydrothermal processing of hydroxyapatite: Past, present, and future. In Hydroxyapatite and Related Compounds; CRC Press Inc.: Boca Raton, FL, USA, 1994.
    [35] Penn, R.L.; Banfield, J.F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from Titania. Geochim. Cosmochim. Acta 1999.
    [36] Guijun Yang, Soo-Jin Park “Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review”. 5, November 2019, Materials 12(21), 3631, 2019.
    [37] X.X. Shi, L.L. Pan, S.P. Chen, Y. Xiao, Q.Y. Liu, L.J. Yuan, J.T. Sun, L.T. Cai, Zn(II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method, Langmuir, 25, 2009.
    [38] 王進威, 中子粉末繞射簡介及其應用, Physics Bimonthly, 20, April, 2021, https://pb.ps-taiwan.org/modules/news/article.php?storyid=75
    [39] Kuo S-Y, Chen W-C, Cheng C-P. Investigation of annealing-treatment on the optical and electrical properties of sol–gel-derived zinc oxide thin films. Superlattice Microst, 2006.
    [40] Mallika AN, Reddy AR, Babu KS, et al. Synthesis and optical characterization of aluminum doped ZnO nanoparticles. Ceram Int, 40: 12171–12177, 2014.
    [41] Ravichandran C, Srinivasan G, Lennon C, et al. Influence of post-deposition annealing on the structural, optical and electrical properties of Li and Mg co-doped ZnO thin films deposited by sol–gel technique. Superlattice Microst, 49: 527–536, 2011.
    [42] S. Satapathy, K. B. R. Varma, Orientated nano grain growth and effect of annealing on grain size in LiTaO3 thin films deposited by sol-gel technique, J. Cryst. Growth 291, 232-238, 2006.
    [43] J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, J. Z. Yan, Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol-gel method, Appl. Surf. Sci. 268, 556-560, 2013.
    [44] Feng Shi; Hengyang Qiao, Preparations, properties and applications of gallium oxide nanomaterials – A review, Nanoselect Volume3, Issue2, February 2022. https://doi.org/10.1002/nano.202100149.
    [45] G. Liu, X. Duan, H. Li, D. Liang, Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods, Mater. Chem. Phys. 2008. https://doi.org/10.1016/j.matchemphys.2008.02.012
    [46] Chang, J.; Liu, Z.; Lin, C.; Lin, J. A Simple Method to Synthesize β-Ga2O3 Nanorods and Their Photoluminescence Properties J. Cryst. Growth 2005, https://www.sciencedirect.com/science/article/pii/S0022024805002630#tbl1.
    [47] Fujihara, S.; Shibata, Y.; Hosono, E. Chemical Deposition of Rodlike GaOOH and β-Ga2O3 Films Using Simple Aqueous Solutions J. Electrochem. Soc. 2005.https://iopscience.iop.org/article/10.1149/1.2060627/meta.
    [48] Mazeina, L.; Picard, Y. N.; Maximenko, S. I.; Perkins, F. K.; Glaser, E. R.; Twigg, M. E.; Freitas, J. A.; Prokes, S. Cryst. Growth of Sn-Doped β- Ga2O3 Nanowires and Ga2O3−SnO2 Heterostructures for Gas Sensing Applications Growth, Des. 2009.
    [49] Hsu, C. L.; Lu, Y. C., et al. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core–shell nanowires, Nanoscale 2012.
    [50] Martínez-Criado, G.; Segura-Ruiz, J.; Chu, M. H.; Tucoulou, R.; López, Crossed Ga2O3/SnO2 Multiwire Architecture: A Local Structure Study with Nanometer Resolution 2014.
    [51] Manuel Alonso-Orts, Ana M. Sánchez, et al. Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires. Nano Lett. 2017. 17, 1, 515–522, December 21, 2016,https://doi.org/10.1021/acs.nanolett.6b04189.
    [52] H. Mahmoudi Chenari, R. Zamiri, D. Maria Tobaldi, M. Shabani, A.Rebelo, J.S. Kumar, S.A. Salehizadeh, M.P.F. Graça, M.J. Soares, J.António Labrincha, J.M.F. Ferreira, Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity, J Solgel Sci Technol. 84, 274–282, 2017.https://doi.org/10.1007/s10971-017-4484-y.
    [53] T. Rakshit, I. Manna, S.K. Ray, Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films, J Appl Phys. 117, 2015. https://doi.org/10.1063/1.4905835.
    [54] J. Wang, Y. Xiong, et al. Balanced performance for β-Ga2O3 solar blind photodetectors: The role of oxygen vacancies, Optical Materials, Volume 112, February 2021.https://doi.org/10.1016/j.optmat.2021.110808.
    [55] S.J. Pearton, J. Yang, P.H. Cary IV, et al. A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev., 5, Article 011301, 2018. https://doi.org/10.1063/1.5006941.
    [56] L. Dong, R. Jia, B. Xin, et al. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3, Sci. Rep., 7, pp. 1-12, 2017.
    [57] J.B. Varley, J.R. Weber, A. Janotti, et al. Oxygen vacancies and donor impurities in β- Ga2O3, Appl. Phys. Lett., 97 p. 142106, 2010.
    [58] Ümit Doğan, Fahrettin Sarcan, et al. Effects of annealing temperature on a ZnO thin film-based ultraviolet photodetector, Phys. Scr. 97 (2022)015803, 10, January 2022.https://doi.org/10.1088/1402-4896/ac4634.
    [59] Y.Z. Li, X.M. Li, X.D. Gao, Effects of post-annealing on Schottky contacts of Pt/ZnO films toward UV photodetector, Journal of Alloys and Compounds, Volume 509, Issue 26, 30 June 2011,https://doi.org/10.1016/j.jallcom.2011.04.039.
    [60] Shao-Yu Chu, Mu-Ju Wu, et al., Investigation of High-Sensitivity NO2 Gas Sensors with Ga2O3 Nanorod Sensing Membrane Grown by Hydrothermal Synthesis Method. Nanomaterials 2023, 13(6), 1064, 15 March 2023, https://doi.org/10.3390/nano13061064.
    [61] Yuexing Cheng, Junhao Ye, et al., Ambipolarity Regulation of Deep-UV Photocurrent by Controlling Crystalline Phases in Ga2O3 Nanostructure for Switchable Logic Applications. Adv. Electron. Mater. 2023.https://doi.org/10.1002/aelm.202201216.
    [62] Pilliadugula, R.; Krishnan, et al., Gas sensing performance of GaOOH and beta- Ga2O3 synthesized by hydrothermal method: A comparison. Mater. Res. Express, 2019.
    [63] Jung-Lung Chiang, Bharath Kumar Yadlapalli, A Review on Gallium Oxide Materials from Solution Processes, Nanomaterials 2022. https://doi.org/10.3390/nano12203601.
    [64] Muruganandham, M.; Amutha, R.; Wahed, M.S.M.A.; Ahmmad, B.; Kuroda, Y.; Suri, R.P.S.; Wu, J.J.; Sillanpää, M.E.T. Controlled Fabrication of α-GaOOH and α-Ga2O3 Self-Assembly and Its Superior Photocatalytic Activity. J. Phys. Chem. C, 2012.
    [65] Arul Prakasam, B.; Lahtinen, M.; Muruganandham, M.; Sillanpää, M. Synthesis of self-assembled α-GaOOH microrods and 3d hierarchical architectures with flower like morphology and their conversion to α- Ga2O3. Mater. Lett. 2015.
    [66] Zhao, W.; Yang, Y.; Hao, R.; Liu, F.; Wang, Y.; Tan, M.; Tang, J.; Ren, D.; Zhao, D. Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: Preparation, characterization and photocatalytic properties. J. Hazard. Mater. 2011.
    [67] Shi, F.; Qiao, H. Effects of hydrothermal temperatures on crystalline quality and photoluminescence properties of β-Ga2O3 microspheres using ammonia as a precipitator. CrystEngComm, 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE