簡易檢索 / 詳目顯示

研究生: 陳若玫
Chen, Ruo-Mei
論文名稱: 陽離子取代對有機鈣鈦礦材料物性與金屬-氧化物-半導體電容器特性影響之研究
Study on the influence of cation substitution on the material physical properties and performance of metal-oxide-semiconductor capacitor of organic perovskite
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 89
中文關鍵詞: 陽離子取代鈣鈦礦介電常數金氧半電容器
外文關鍵詞: Cation substitution, Perovskite dielectric constant, Metal-oxide-semiconductor capacitor
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦具有光敏特性,常被應用於許多不同功能的元件上,例如:太陽能電池、發光二極體、光電感測器、電阻式記憶體等。目前眾多文獻皆發現摻雜不同種類的陽離子與摻雜不同的陽離子濃度可以有效提升鈣鈦礦太陽能電池性能,而在鈣鈦礦金屬-氧化物-半導體電容器(Metal-oxide-semiconductor capacitor, MOS-C)元件上尚無探討改變陽離子種類或濃度對元件的影響。
    本論文主要分為兩大部分。第一部分討論在甲基胺鈣鈦礦(MAPbI3)中以不同濃度的甲脒離子(Formamidinium, FA+)取代部分甲基胺離子(Methylammonium, MA+)對鈣鈦礦薄膜與鈣鈦礦MOS-C元件的影響。在鈣鈦礦薄膜方面,由於FA+的離子半徑比MA+大,可以提高公差因子增強晶體結構,晶粒尺寸上升而減少晶界,使晶界中的缺陷密度下降。在鈣鈦礦MOS-C元件方面,由於MA+的偶極矩比FA+大,因此在1MHz下受到的方向極化影響降低,使得相對介電常數下降。元件在照光前的反轉區不明顯,照光後使移動載子增加累積數量,因此有較明顯的反轉區。
    第二部分討論在FA0.75MA0.25PbI3鈣鈦礦中摻雜不同濃度的銫離子(Cs+)對鈣鈦礦薄膜與鈣鈦礦MOS-C元件的影響。在鈣鈦礦薄膜方面,由於Cs+的摻雜可以提升結晶性,形成無孔洞且均勻的鈣鈦礦薄膜,降低薄膜的缺陷,提升光吸收度,因此在大氣下的穩定性相較於FA0.75MA0.25PbI3來得更好。在鈣鈦礦MOS-C元件方面,由於Cs+取代部份陽離子,使得電偶極數量減少,因此造成相對介電常數降低。由於Cs+的摻雜降低了薄膜的缺陷,使得移動載子不易被陷阱俘獲,因此在照光前的反轉區已經明顯形成。

    This research consists of two parts. The first part discusses the influence of incorporating different concentrations of formamidinium ion (FA+) in MAPbI3 perovskite on thin film and metal-oxide-semiconductor capacitor (MOS-C) device. Because the ionic radius of FA+ is larger than that of methylammonium (MA+), the substitution of FA+ increases the tolerance factor and grain size, reducing the grain boundary and defect density to form a stable cubic structure. Because the dipole moment of MA+ is larger than that of FA+, the effect of orientation polarization decreases at 1 MHz, reducing the relative dielectric constant. No inversion behavior was found under dark current-voltage (I-V) measurement, but obvious inversion was found under irradiation with light, owing to the increase of mobile carriers.
    In the second part of this research, we discussed the influence of doping different concentrations of cesium ion (Cs+) in FA0.75MA025PbI3 perovskite on thin film and MOS-C device. The crystallinity was improved by doping Cs+. Doping Cs+ can improve the quality of perovskite thin films, reducing the defect, and enhancing the light absorption. Therefore, it was much stable than the FA0.75MA025PbI3 perovskite. Because the Cs+ ions occupied some cation sites, the number of dipole moment was decreased, reducing the relative dielectric constant. Moreover, the inversion region was observed under dark I-V measurement, indicating that the capture of mobile charges was also reduced by the Cs+ doping.

    摘要 I Extended Abstract II 誌謝 XV 目錄 XVI 圖目錄 XX 表目錄 XXVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧與理論基礎 4 2-1 鹵化物鈣鈦礦 4 2-1-1 鹵化物鈣鈦礦之有機陽離子摻雜 7 2-1-2 鹵化物鈣鈦礦之無機陽離子摻雜 8 2-1-3 鹵化物鈣鈦礦之陰離子摻雜 11 2-1-4 鹵化物鈣鈦礦之介電特性 12 2-2 金氧半電容器(Metal-Oxide-Semiconductor Capacitor, MOS-C) 15 2-2-1 金氧半電容器特性 15 2-2-2 金氧半電容器缺陷型態 19 2-2-3 金氧半電容器的理論計算 21 2-3 漏電流機制 23 2-3-1 直接穿隧(Direct Tunneling) 23 2-3-2 傅勒-諾得翰穿隧(Fowler-Nordheim Tunneling, F-N Tunneling) 24 2-3-3 蕭特基發射(Schottky Emission) 24 2-3-4 普爾-法蘭克發射(Poole-Frenkel Emission, P-F Emission) 25 第三章 實驗步驟與方法 27 3-1 鈣鈦礦金氧半電容器元件製程 27 3-1-1 矽基板清洗 27 3-1-2 去除原生氧化層 28 3-1-3 氧化層製備 28 3-1-4 下電極製備 28 3-1-5 鈣鈦礦薄膜製備 28 3-1-6 上電極製備 29 3-2 薄膜與元件量測儀器介紹 30 3-2-1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 30 3-2-2 X光繞射儀(X-ray diffraction, XRD) 31 3-2-3 光致發光光譜儀(Photoluminescence spectroscopy) 32 3-2-4 紫外光-可見光-近紅外光分光光譜儀 (UV/Visible/NIR Spectrophotometer) 33 3-2-5 電流-電壓特性量測 34 3-2-6 電容-電壓特性量測 35 第四章 結果與討論 37 4-1 FA陽離子取代對不同濃度鈣鈦礦薄膜與元件之影響 37 4-1-1 FA+取代對1.2M鈣鈦礦薄膜與MOS-C元件之影響 37 4-1-2 FA+取代對1.2M鈣鈦礦MOS-C元件之影響 43 4-1-3 FA+取代對1M鈣鈦礦薄膜與MOS-C元件之影響 49 4-1-4 FA+取代對1M鈣鈦礦MOS-C元件之影響 56 4-2 Cs陽離子摻雜對不同濃度鈣鈦礦薄膜與元件之影響 61 4-2-1 Cs+摻雜對1.2M鈣鈦礦薄膜之影響 61 4-2-2 Cs+摻雜對1.2M鈣鈦礦MOS-C元件之影響 67 4-2-3 Cs+摻雜對1M鈣鈦礦薄膜之影響 72 4-2-4 Cs+摻雜對1M鈣鈦礦MOS-C元件之影響 78 第五章 結論與未來規劃 83 5-1 結論 83 5-2 未來規劃 84 參考文獻 85

    [1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [2] L. Etgar et al., "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells," J Am Chem Soc, vol. 134, no. 42, pp. 17396-9, 2012.
    [3] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature Photonics, vol. 8, no. 2, pp. 133-138, 2013.
    [4] G. Han et al., "Additive Selection Strategy for High Performance Perovskite Photovoltaics," The Journal of Physical Chemistry C, vol. 122, no. 25, pp. 13884-13893, 2018.
    [5] Y. Zhang, G. Grancini, Y. Feng, A. M. Asiri, and M. K. Nazeeruddin, "Optimization of Stable Quasi-Cubic FAxMA1–xPbI3 Perovskite Structure for Solar Cells with Efficiency beyond 20%," ACS Energy Letters, vol. 2, no. 4, pp. 802-806, 2017.
    [6] J. B. Whitaker et al., "Scalable slot-die coating of high performance perovskite solar cells," Sustainable Energy & Fuels, vol. 2, no. 11, pp. 2442-2449, 2018.
    [7] F. Sahli et al., "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency," Nat Mater, vol. 17, no. 9, pp. 820-826, 2018.
    [8] Q. Van Le, H. W. Jang, and S. Y. Kim, "Recent advances toward high‐efficiency halide perovskite light‐emitting diodes: review and perspective," Small Methods, vol. 2, no. 10, p. 1700419, 2018.
    [9] D. Panda and T.-Y. Tseng, "Perovskite oxides as resistive switching memories: a review," Ferroelectrics, vol. 471, no. 1, pp. 23-64, 2014.
    [10] A. Pramanick, A. D. Prewitt, J. S. Forrester, and J. L. Jones, "Domains, domain walls and defects in perovskite ferroelectric oxides: A review of present understanding and recent contributions," Critical reviews in solid state and materials sciences, vol. 37, no. 4, pp. 243-275, 2012.
    [11] M. Ahmadi, T. Wu, and B. Hu, "A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics," Adv. Mater., vol. 29, no. 41, p. 1605242, 2017.
    [12] M. M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis, and K. Petridis, "Inorganic and hybrid perovskite based laser devices: a review," Materials, vol. 12, no. 6, p. 859, 2019.
    [13] V. Jella, S. Ippili, and S.-G. Yoon, "Halide (Cl/Br)-Incorporated Organic–Inorganic Metal Trihalide Perovskite Films: Study and Investigation of Dielectric Properties and Mechanical Energy Harvesting Performance," ACS Applied Electronic Materials, vol. 2, no. 8, pp. 2579-2590, 2020.
    [14] C. C. Boyd, R. Cheacharoen, T. Leijtens, and M. D. McGehee, "Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics," Chem Rev, vol. 119, no. 5, pp. 3418-3451, 2019.
    [15] E. Aydin, M. De Bastiani, and S. De Wolf, "Defect and Contact Passivation for Perovskite Solar Cells," Adv. Mater., Review vol. 31, no. 25, p. 20, 2019.
    [16] D. W. deQuilettes et al., "Impact of microstructure on local carrier lifetime in perovskite solar cells," Science, Article vol. 348, no. 6235, pp. 683-686, 2015.
    [17] D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, and V. Dyakonov, "Improved charge carrier lifetime in planar perovskite solar cells by bromine doping," Sci Rep, vol. 6, p. 39333, 2016.
    [18] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, "Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys," Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2015.
    [19] A. Binek, F. C. Hanusch, P. Docampo, and T. Bein, "Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide," J Phys Chem Lett, vol. 6, no. 7, pp. 1249-53, 2015.
    [20] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, and N.-G. Park, "Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell," Advanced Energy Materials, vol. 5, no. 20, 2015.
    [21] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, "Efficiency limits for single-junction and tandem solar cells," Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 2952-2959, 2006.
    [22] B. Charles, J. Dillon, O. J. Weber, M. S. Islam, and M. T. Weller, "Understanding the stability of mixed A-cation lead iodide perovskites," Journal of Materials Chemistry A, vol. 5, no. 43, pp. 22495-22499, 2017.
    [23] G. R. Castelo, "Ambient-processed Low-cost Perovskite-based Photovoltaics," 2019.
    [24] S. Govinda et al., "Behavior of methylammonium dipoles in MAPbX3 (X= Br and I)," The journal of physical chemistry letters, vol. 8, no. 17, pp. 4113-4121, 2017.
    [25] A. Mohanty, D. Swain, S. Govinda, T. N. G. Row, and D. Sarma, "Phase Diagram and Dielectric Properties of MA1–x FA x PbI3," ACS Energy Letters, vol. 4, no. 9, pp. 2045-2051, 2019.
    [26] E. J. Juarez-Perez et al., "Photoinduced giant dielectric constant in lead halide perovskite solar cells," The journal of physical chemistry letters, vol. 5, no. 13, pp. 2390-2394, 2014.
    [27] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, "Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications," Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, 2019.
    [28] M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, "ABX3 Perovskites for Tandem Solar Cells," Joule, vol. 1, no. 4, pp. 769-793, 2017.
    [29] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, no. 3, 2014.
    [30] F. Ji et al., "A balanced cation exchange reaction toward highly uniform and pure phase FA1−xMAxPbI3 perovskite films," Journal of Materials Chemistry A, vol. 4, no. 37, pp. 14437-14443, 2016.
    [31] M. Saliba et al., "Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance," Science, Article vol. 354, no. 6309, pp. 206-209, 2016.
    [32] G. Niu, W. Li, J. Li, X. Liang, and L. Wang, "Enhancement of thermal stability for perovskite solar cells through cesium doping," RSC Advances, vol. 7, no. 28, pp. 17473-17479, 2017.
    [33] C. Yi et al., "Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells," Energy & Environmental Science, vol. 9, no. 2, pp. 656-662, 2016.
    [34] M. Saliba et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy Environ Sci, vol. 9, no. 6, pp. 1989-1997, 2016.
    [35] T. Zhang et al., "Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts," CrystEngComm, vol. 19, no. 8, pp. 1165-1171, 2017.
    [36] Y. Ren, J. Chen, D. Ji, Y. Sun, and C. Li, "Improve the quality of HC(NH2)2PbIxBr3−x through iodine vacancy filling for stable mixed perovskite solar cells," Chemical Engineering Journal, vol. 384, 2020.
    [37] S. Tombe et al., "Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells," Journal of Materials Chemistry C, vol. 5, no. 7, pp. 1714-1723, 2017.
    [38] T. Bandyopadhyay, K. J. Han, D. Chung, R. Chatterjee, M. Swaminathan, and R. Tummala, "Rigorous electrical modeling of through silicon vias (TSVs) with MOS capacitance effects," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 6, pp. 893-903, 2011.
    [39] B. El-Kareh, "Silicon devices and process integration," New York: Springer, vol. 10, pp. 978-0, 2009.
    [40] D. A. Neamen, Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill, 2012.
    [41] S. M. Sze, Semiconductor.Devices Physics.Technology Sze.2ndEd. Wiley, 2002.
    [42] K. Piskorski and H. Przewlocki, "The methods to determine flat-band voltage V FB in semiconductor of a MOS structure," in The 33rd International Convention MIPRO, 2010: IEEE, pp. 37-42.
    [43] 鄭建民、陳開煌,二氧化鈦電阻式記憶體之特性,南台學報,第36卷,第1期,25-34頁,2011年4月。
    [44] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015.
    [45] W. Nie et al., "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, vol. 347, no. 6221, pp. 522-525, 2015.
    [46] T. Pang et al., "Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors," Journal of Materials Chemistry C, vol. 7, no. 3, pp. 609-616, 2019.
    [47] T. Pang et al., "Hysteresis effects on carrier transport and photoresponse characteristics in hybrid perovskites," Journal of Materials Chemistry C, vol. 8, no. 6, pp. 1962-1971, 2020.
    [48] Y. Wang et al., "Ionic behavior of organic–inorganic metal halide perovskite based metal-oxide-semiconductor capacitors," Physical Chemistry Chemical Physics, vol. 19, no. 20, pp. 13002-13009, 2017.
    [49] L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, and C. Burda, "Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2," Journal of the American Chemical Society, vol. 136, no. 35, pp. 12205-12208, 2014.
    [50] W. Zhao, Z. Yao, F. Yu, D. Yang, and S. Liu, "Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells," Advanced science, vol. 5, no. 2, p. 1700131, 2018.

    下載圖示
    2026-01-18公開
    QR CODE