| 研究生: |
陳俊樺 Chin, Chun-Hua |
|---|---|
| 論文名稱: |
在有錯邊的莫氏立方體上的全圓性 Pancyclicity on Mobius Cubes with Maximal Edge Faults |
| 指導教授: |
謝孫源
Hsieh, Sun-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 27 |
| 中文關鍵詞: | 超立方體 、圖論 、連結網路 |
| 外文關鍵詞: | fault-tolerant embedding, Mobius cubes, graph-theoretic interconnection networks |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
容錯性一直是連結網路中的一個重要課題,主要是討論在圖(graph)中, 若是點與邊發生錯誤,使得網路的失去連通性,在一個圖中,假設其最小長度的圓圈為m, 最大長度的圓圈為n, 若在此圖中存在長度l 的圓圈, m = l = n, 則此圖具有泛圓圈性(pancyclic)的特性。
在此篇論文中, 我們證明了在n維度的Mobios cubes中, 即使有(n-2)個邊出錯的情況下, Mobios cubes 仍然保有泛圓圈性(pancyclic)的特性。
A graph G = (V;E) is said to be pancyclic if it contains cycles of all lengths from 4 to |V| in G. Let Fe be the set of faulty edges. In this paper, we show that an n-dimensional Mobius cube, n >= 1, contains a fault-free Hamiltonian path when |Fe| <= (n - 1). We also show that an n-dimensional Mobius cube, n >= 2, is pancyclic when |Fe| <= (n - 2). Since an n-dimensional Mobius cube is regular of degree n, our result achieves optimality in the
worst case.
[1] S. G. Akl, Parallel Computation: Models and Methods. Prentice Hall, 1997.
[2] N. Ascheuer, Hamiltonian path problems in the on-line optimization of Flexible Manufac-turing Systems, Technical Report TR 96-3, Konrad-Zuse-Zentrumfur Informationstechnik,Berlin, Feb. 1996 (also available at ftp://ftp.zib.de/pub/zib-publications/reports/TR-96-03.PS.Z).
[3] J. C. Bermond, Ed., Interconnection Networks, a special issue of Discrete Applied Mathe-matics, vol. 37+38, 1992.
[4] J. Bruck, R. Cypher, and C. T. Ho, "Fault-tolerant meshes and hypercubes with minimal numbers of spares," IEEE Transaction on Computers, vol. 42, no. 9, pp. 1089{1104, 1993.
[5] J. Bruck, R. Cypher, and C. T. Ho, "Fault-tolerant de Bruijn and shu²e-exchange net-works," IEEE Transaction on Parallel and Distributed Systems, vol. 5, no. 5, pp. 548{553,1994.
[6] J. Bruck, R. Cypher, and C. T. Ho, "On the construction of fault-tolerant cube-connected cycles networks," Journal of Parallel and Distributed Computing, vol. 25, pp. 98{106, 1995.
[7] J. Bruck, R. Cypher, and C. T. Ho, "Wildcard dimensions, coding theory and fault-tolerant meshes and hypercubes," IEEE Transaction on Computers, vol. 44, no. 1, pp. 150{155, 1995.
[8] M. Y. Chan, F. Y. L. Chin, and C. K. Poon, "Optimal simulation of full binary trees on faulty hypercubes," IEEE Transaction on Parallel and Distributed Systems, vol. 6, no. 3, pp. 269{286, 1995.
[9] P. Cull, and S. M. Larson, The MÄobius cubes, in Proceedings of the sixth Distrib. Memory Computing Conference, vol. 44, pp. 699{702, 1991.
[10] K. Diks and A. Pele, "E±cient gossiping by packets in networks with random faults," SIAM Journal on Discrete Mathematics, vol. 9, no. 1, pp. 7{18, 1996.
[11] A. H. Esfahanian and S. L. Hakimi, "Fault-tolerant routing in de Bruijn communication networks," IEEE Transactions on Computers, vol. C-34, no. 9, pp. 777{788, 1985.
[12] F. Harary, Graph theory, Addison-wesley, Massachusetts, 1972.
[13] D. F. Hsu, Interconnection Networks and Algorithms, a special issue of Networks, vol. 23, no. 4, 1993.
[14] W. Huang, Y. Chuang, J. J. M. Tan, L. Hsu, Fault-free Hamiltonian cycle in faulty MÄobius cubes, Computaci¶on y Systemas, vol. 4, no. 2, pp. 106{114, 2000.
[15] A. Kanevsky and C. Feng, On the embedding of cycles in pancake graphs, Parallel Computing, vol. 21, pp. 923{936, 1995.
[16] H. C. Keh and J. C. Lin, On fault-tolerant embedding of Hamiltonian cycles, linear arrays and rings in a Flexible Hypercube", Parallel Computing, vol. 26, pp. 769{781, 2000.
[17] H. K. Ku and J. P. Hayes, "Optimally edge fault-tolerant trees," Networks, vol. 27, pp. 203{214, 1996. 26 BIBLIOGRAPHY 27.
[18] S. Lati¯ and N. Bagherzadeh, "Hamiltonicity of the clustered-star graph with embedding applications," Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, 1996, pp. 734{744.
[19] A. C. Liang, S. Bhattacharya, and W. T. Tsai, "Fault-tolerant multicasting on hypercubes,"Journal of Parallel and Distributed Computing, vol. 23, pp. 418{428, 1994.
[20] R. S. Lo, and G. H. Chen, Embedding longest fault-free paths in arrangement graphs with faulty vertices, Networks, vol. 37, no. 2, pp. 84{93, 2001.
[21] Y. Rouskov, S. Lati¯, and P. K. Srimani, "Conditional fault diameter of star graph net-works," Journal of Parallel and Distributed Computing, vol. 33, pp. 91{97, 1996.
[22] R. A. Rowley and B. Bose, "Distributed ring embedding in faulty De Bruijn networks,"IEEE Transaction on Computers, vol. 46, no. 2, pp. 187{190, 1997.
[23] H. Sarbazi-Azad, M. Ould-Khaoua, and L. M. Mackenzie, Algorithm construction of Hamil-tonian in pyramids, Information Processing Letters, vol. 80, pp. 75{79, 2001.
[24] Y. C. Tseng, Embedding a ring in a hypercube with both faulty links and faulty nodes,Information Processing Letters, vol. 59, pp. 217{222, 1996.
[25] Y. C. Tseng, S. H. Chang, and J. P. Sheu, Fault-tolerant ring embedding in star graphs with both link and node failures, IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 12, pp. 1185{1195, 1997.
[26] M. D. Wagh and J. Mo, Hamiltonian cycles in Trivalent Cayley graphs, Information Pro-cessing Letters, vol. 60, pp. 177{181, 1996.
[27] P. J. Yang, S. B. Tien, and C. S. Raghavendra, "Embedding of rings and meshes onto faulty hypercubes using free dimensions," IEEE Transaction on Computers, vol. C-43, no. 5, pp. 608{613, 1994.