簡易檢索 / 詳目顯示

研究生: 林家瑞
Lin, Jia-Rui
論文名稱: 以數位再設計實現混沌系統的同步化追蹤控制
Chaotic Synchronization Tracking Control via Digital Redesign
指導教授: 蔡聖鴻
Tsai, S. H. Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 90
中文關鍵詞: 混沌系統同步化數位再設計非線性資料採樣控制
外文關鍵詞: nonlinear sampled-data control, synchronizaiton, digital redesign, chaotic
相關次數: 點閱:126下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本文提出三個研究的主題, ( i ) 數位再設計的方法應用於混沌系統的同步化追蹤控制中。基於李亞諾夫的方法,在連續時域中,單一狀態變數的控制器被推導出。於離散時間的控制中,一種有效的數位設計的技術被提出來達成同步化兩個對等的混沌系統。( ii ) 一種改進穩定度的分析的方法被提出。穩定度準則證明假如系統存在漸近穩定態的操作點 (平衡點),則所輸入的控制訊號所產生的軌跡仍然會趨近於漸近穩態。藉著使用最佳線性化模式,這種模式所導出實際的線性化模式於操作點中,而這些操作點所產生的解即為最佳線性化解於取樣的瞬間。( iii ) 非線性的混合模式系統具有輸入延遲的問題,以次佳化的數位再設計的方法將會被有效來控制。此外,以基因演算法則應用於數位控制器的參數調節於最佳化中。最後,數值模擬的效果則說明本文所提出的設計方法。

    In this thesis, three issues are studied.
    ( i ) A digital redesign method is proposed for synchronizing chaotic systems. Based on the Lyapunov stability theory, a single-state variable feedback controller is derived in continuous-time domain. In discrete-time control, an effective digital redesign technique is proposed to achieve the state synchronization of two identical chaotic systems. ( ii ) An improved stability analysis for a nonlinear hybrid system is presented. The proposed stability criterion shows that if the system possesses a manifold of exponentially stable constant operating points (equilibria) corresponding to constant values of the input signal, then the input signal yields a trajectory that remains close to exponentially stable state. By using the optimal linearization method, it yields exact local linear models at operating states of interest and optimal local linear models in the neighborhood of operating states of interest. ( iii ) By using the sub-optimal digital redesign method, the nonlinear hybrid system with input time delay will be effective to control. Besides, the sub-optimal digital redesign technique uses the genetic algorithm for parameter tuning in optimization. Finally, numerical simulations demonstrate the efficacy via the proposed design methodologies in this thesis.

    Table of Contents ABSTRACT……………………………………………………………………Ⅱ List of Figures…………………………………………………………………Ⅴ Chapter 1 Introduction……………………………………………………………….1 2 Chaotic Synchronization Tracking Control via Digital Redesign…………………………………………………………………….4 2.1 Introduction…………………………………………………………….5 2.2 Continuous-time design………………………………………………...6 2.3 Digital redesign method………………………………………………10 2.4 Sampled-data design for the chaotic system with simulation result….15 2.5 Conclusions……………………………...……………………………23 3 An Improved Stability Property of Nonlinear Sampled-Data Systems………………………………………………24 3.1 Introduction…………………………………………………….…….25 3.2 System description and main result…………………………….…….26 3.3 Nonlinear systems with jumps………………………………….…….31 3.4 Main result revisited and numerical simulation………………………37 3.5 Concluding remarks….………………………………………………..41 4 Chaotic Synchronization Tracking Control via Sub-Optimal Digital Redesign with Input Time Delay by Genetic Algorithms Optimization Tuning…..……….43 4.1 Introduction………………………………..………….………………..44 4.2 Sub-optimal digital redesign method……..…………………….…...…45 4.3 Genetic algorithm for optimization tuning..………………………..….53 4.4 Main result and numerical simulation……..……………………..……55 4.5 Conclusions………………………………..……………………..……64 5 Conclusions………………………………….……………………..…….65 Appendix 1.……………………………………………………………....…...67 Appendix 2…………………………………………………………..….…….70 References……………………………………………………………….…....74

    Reference

    [1] Alander, J., An Indexed Bibliography of Genetic Algorithms: 1957-1993, Art of CAD Ltd., Espoo, Finland, 1994.
    [2] Bernardo, M. D., “An adaptive approach to the control of chaos and synchronization of continuous-time chaotic systems”, International Journal Bifurcation Chaos, vol. 6, no. 3, pp. 557-568, 1996.
    [3] Chao, P. W. and Tsai, J. S. H., “ Predictor control and suboptimal digital redesign for continuous-time system with delayed input”, IMA Journal of Mathematical Control and Information, vol. 6, pp. 377-390, 1999.
    [4] Chen, G. and Dong, X., “ On feedback control of chaotic continuous-time systems,” IEEE Trans. on Circuits Systems, vol. 40, no. 9, pp. 591-601, 1993.
    [5] Chen, T. and Francis, B., “ Input-output stability of sampled-data systems”, IEEE Trans. on Automat. Contr., vol. 36, pp. 50-58, 1991.
    [6] Chen, G. and Dong, X., “Controlling Chua’s circuits”, Journal Circuits Systems Comput., vol. 3, no. 1, pp. 139-149, 1993.
    [7] Cuomo, K. M., “ Synthesizing self-synchronizing chaotic array”, International Journal Bifurcation Chaos, vol. 4, no. 3, pp. 727-737, 1994.
    [8] Cuomo, K. M. and Oppenheim, A. V., “ Circuit implementation of synchronizing chaos with applicationos to communication”, Phys. Rev. Lett., vol. 71, no. 1, pp. 65-68, 1993.
    [9] Carroll, T. L., and Perora, L. M., “ Synchronizing a chaotic systems”, IEEE Trans. on Circuits Systems, vol. 38, pp. 453-456, 1991.
    [10] Chen, Y. H. and Chou, M. Y., “ Continuous feedback approach for controlling chaos”, Phys. Rev. E, vol. 50, no. 3, pp. 2331-2334, 1994.
    [11] Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
    [12] Dmitriev, A. S., Shirikov, M. and Starkov, S. O., “ Chaotic synchronization in ensembles of couple maps”, IEEE Trans. on Circuits and Systems-1:Fundamental Theory and Applications, vol. 44, no. 10, pp. 918-926, Oct. 1997.
    [13] Desoer, C. A., “ Slowly varying discrete system ”, Electron. Lett., vol. 6, no. 11, pp. 339-340, 1970.
    [14] Dressler, U. and Nitsche, G., “ Controlling chaos using time delay coordinates”, Phys. Rev. Lett., no. 1, pp. 1-4, 1992.
    [15] Foegl, D. B., Evolutionary Computation: The Fossil Record, New Jersery: IEEE press., 1998.
    [16] Foegl, D. B., “Using evolutionary programming for modeling: an ocean acoustic example ”, IEEE Journal on Oceanic Engineering, vol. 17, no. 4, pp. 333-340, 1992.
    [17] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.
    [18] Gorecki, H., Fuksa, S., Grabowski, P. and Korytowski, A., Analysis and Synthesis of Time Delay Systems, Wiley, New York, 1989.
    [19] Gen, M. and Cheng, R., Genetic Algorithms and Engineering Design, Wiley, New York, 1997.
    [20] Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., “ Effective chaotic orbit tracker:a prediction-based digital redesign approach”, IEEE Trans. on Circuits and Systems-1: Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.
    [21] Huang, J. and Lin, C. F., “A stability property and its application to discrete-time nonlinear system control”, IEEE Trans. on Automat. Contr., vol. 39, pp. 2307-2311, 1994.
    [22] Ioannou, P. A. and Sun, J., Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1996.
    [23] Kramer, S. C. and Martin, R. C. Ⅳ., “Direct optimization of gain scheduled controllers via genetic algorithms”, Journal of Guidance, Control, and Dynamics, vol. 19, pp. 636-642, 1996.
    [24] Krishnakumar, K. and Goldberg, D. E., “Control system optimization using genetic algorithm ”, Journal of Guidance, Control, and Dynamics, vol. 15, pp. 735-740, 1992.
    [25] Kapitaniak, T., “ Continuous control and synchronization in chaotic systems, Chaos”, Solitons Fractals, vol. 6, no. 3, pp. 237-244, 1995.
    [26] Khalil, H. K. and Kokotovic, P. V., “ On stability properties of nonlinear systems with slowly varying inputs”, IEEE Trans. on Automat. Contr., vol. 36, p. 229, 1991.
    [27] Kelemen, M., “ A stability property”, IEEE Trans. on Automat. Contr., vol. 31, pp. 766-768, 1986.
    [28] Lawrence, D. A., “ Stability analysis of nonlinear sampled-data systems”, in Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, 1997, pp. 365-366.
    [29] Lawrence, D. A. and Rugh, W. J., “On a stability theorem for nonlinear systems with slowly varying inputs”, IEEE Trans. on Automat. Contr., vol. 35, pp. 860-864, 1990.
    [30] Lawrence, D. A. and Rugh, W. J., “ Gain scheduling dynamic linear controllers for a nonlinear plant”, Automatica, vol. 31, no. 3, pp. 381-390, 1995.
    [31] Lawrence, D. A., “ A stability property of nonlinear sampled-data systems with slowly varying inputs”, IEEE Trans. on Automat. Contr., vol. 45, no. 3, Mar. 2000.
    [32] Lewis, F. L., Applied Optimal control and Estimation:Digital Design and Implementation, Englewood Cliffs, NJ:Prentice-Hall, 1992.
    [33] Liao, T. L. and Lin, S. H., “Adaptive control and synchronization of Lorenz systems”, Journal of the Franklin Institute, vol. 336, pp. 925-937, 1999.
    [34] Man, K. F., Tang, K. S. and Wang, S. K., Genetic Algorithms: Concepts and Design, Springer-Verlag, London, 1999.
    [35] Michalewicz, Z., Genetic Algorithm + Data structure =Evolution Programs, 3rd edition, Springer-Verlag, New York, 1996.
    [36] Malek-Zavarei, M. and Jamshidi, M., Time-Delay Systems: Analysis, Optimization and Applications, North-Holland, Amsterdam, 1987.
    [37] Ott, E., Grebogi, C. and Yorke, J. A., “ Controlling chaos”, Phys. Rev. Lett., vol. 64, no. 11, pp. 1196-1199, 1990.
    [38] Ogorzalek, M. J., “ Taming chaos-Part I:synchronization”, IEEE Trans. on Circuits Systems, vol. 40, pp. 693-699, 1993.
    [39] Oketami, N., Ushio, T. and Hirai, K., “ Decentralized control of chaos in nonlinear network”, Phys. Lett. A, vol. 198, pp. 327-332, 1995.
    [40] Özdamar, L., “ A genetic algorithm approach to a general category project scheduling problem”, IEEE Trans. on Syst., Man, Cybern. C., vol. 29, pp. 44-59, Feb. 1999.
    [41] Park, P., Moon Y. S. and Kwon, W. H., “ A stabilizing output-feedback linear quadratic control for pure input-delayed systems”, International Journal Control, vol. 72, pp. 385-391, 1999.
    [42] Pyragas, K., “ Continuous control of chaos by self-controlling feedback”, Phys. Lett. A, vol. 170, pp. 421-428, 1992.
    [43] Pecora, L. M. and Caroll, T. L., “ Synchronization in chaotic systems”, Phys. Rev. Lett., vol. 64, no. 8, pp. 821-824, 1990.
    [44] Schwefel, H., Evolution and Optimum Seeking, Wiley, New York, 1995.
    [45] Sheen, I. E., Tsai, J. S. H. and Shieh, L. S., “Optimal digital redesign of continuous-time system with input time delay and/or asynchronous sampling”, Journal Franklin Inst., vol. 335B, pp. 605-616, 1998.
    [46] Sparrow, C., The Lorenz Equations :Bifurcation, Chaos and Strange Attractors, Springer, New York, 1982.
    [47] Shieh, L. S., Chen, G. and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems”, International Journal Syst. Sci., vol. 23, pp. 839-854, 1992.
    [48] Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “ Design of PAM and PWM digital controllers for cascaded analog systems”, ISA-Trans., vol. 37, pp. 201-213, 1998.
    [49] Shieh, L. S., Zhang, J. L. and Coleman, N. P., “ Optimal digital redesign of continuous-time controllers”, Computer Math. Appl., vol. 22, pp. 25-35, 1991.
    [50] Shieh, L. S., Zhang, J. L. and Sunkel, J. W., “ A new approach to the digital redesign of continuous-time controllers”, Control-Theory Advanced Techniques, vol. 8, pp. 37-57, 1992.
    [51] Shieh, L. S., Wang, W. M. and Tsai, J. S. H., “Optimal digital design of hybrid uncertain system using genetic algorithms”, IEE proceedings, Control Theory and Applications, vol. 146, pp. 119-130, 1999.
    [52] Shieh, L. S., Zhao, X. M., Coleman, N. P. and Sunkel, J. W., “ Two-stage suboptimal discrete-time regulars for continuous-time stiff dynamic systems”, Applied Mathematics and Modelling, vol. 14, pp. 199-211, 1990.
    [53] Shieh, L. S., Zhao, X. M. and Zhang, J. L., “ Locally optimal digital redesign of continuous-time systems”, IEEE Trans. on Industrial Electronics, vol. 36, pp. 511-515, 1989.
    [54] Teixeira, M. C. M. and Zak, S. H., “ Stabilizing controller design for uncertain nonlinear systems using fuzzy models”, IEEE Trans. on Fuzzy Syst., vol. 7, pp. 133-142, 1999.
    [55] Tsai, J. S. H., Shieh, L. L, and Sun, Y. Y., “ Observer-based hybrid control of sampled-data uncertain system with input time delay”, International Journal, vol. 28, no. 4, pp. 315-319, 1999.
    [56] Tsai, J. S. H., Shieh, L. S. and Zhang, J. L., “ An improvement of the digital redesign method based on the block-pulse function approximation”, Circuits, Systems and Signal Processing, vol. 12, pp. 37-49, 1993.
    [57] Tsai, J. S. H., Shieh, L. S., Zhang, J. L. and Coleman, N. P., “ Digital redesign of pseudo continuous-time suboptimal regulators for large-scale discrete systems”, Control-Theory and Advanced Technology, vol. 5, pp. 37-65, 1989.
    [58] Wu, C., Yang, T. and Chua, L. O., “ On adaptive synchronization and control of nonlinear dynamical systems”, International Journal Bifurcation Chaos, vol. 6, no. 3, pp. 455-472, 1996.
    [59] Wu, C. W. and Chua, L. O., “A unified framework for synchronization and control of dynamical systems”, International Journal Bifurcation Chaos, vol. 4, no. 4, pp. 979-998, 1994.
    [60] Wang, Y., Singer, J. and Bau, H., “ Controlling chaos in a thermal convection loop”, Journal Fluid Mech., vol. 237, pp. 479-498, 1992.
    [61] Yu, X., “ Controlling Lorenz chaos”, International Journal Syst. Sci., vol. 27, no. 4, pp. 355-359, 1996.
    [62] Zeng, Y. and Singh, S. N., “ Adaptive control of chaos in Lorenz systems”, Dynamics Control, vol. 7, pp. 143-154, 1996.

    下載圖示 校內:2004-06-11公開
    校外:2004-06-11公開
    QR CODE