簡易檢索 / 詳目顯示

研究生: 徐嘉誠
Hsu, Chi- Cheng
論文名稱: La2O3摻雜對於(1-x)Pb(Fe2/3W1/3)O3-xPbTiO3 弛緩性鐵電陶瓷特性之影響
The La2O3 Doping Effects on the Characteristics of (1-x)Pb(Fe2/3W1/3)O3-PbTiO3 Relaxor Ferroelectric Ceramics
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 鉛鐵鎢弛緩介電體
外文關鍵詞: relaxor, PFW
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 0.7Pb(Fe2/3W1/3)O3(PFW)-0.3PbTiO3(PT)為一有著不明顯的常溫下弛緩性現象,以及因為空間電荷極化現象而有著相當程度的介電損失的弛緩性鐵電陶瓷成員之一。
    本文主要以固態反應法製備0.7(1-x)PFW-0.3PT弛緩體,試驗摻雜La2O3以期降低介電損失並增加介電擴散現象。摻雜La2O3的(1-x)PFW-xPT雖可平化介電常數溫度曲線以及減少空間電荷極化影響,但同時亦會使居理點向低溫移動。
    由實驗結果顯示,摻雜5at% La2O3可得到極低的介電損失,而在x=0.3到0.4之間亦可在常溫保持高介電的弛緩性鐵電行為。本文亦以兩階段混合(間接)方式合成不同比例的(1-x)PFW-xPT,並且討論比較Pb0.95La0.05(Fe2/3W1/3)0.65Ti0.35O3不同合成方式之弛緩性與介電損失。

    0.7Pb(Fe2/3W1/3)O3(PFW)-0.3PbTiO3(PT) is one of the classic relaxors with little diffuse-phase-transition(DPT) in normal temperature and lots of dielectric loss caused by space charge appearance.
    In present work, the 0.7PFW-0.3PT relaxor is synthesized with the conventional solid solution. To decrease the dielectric loss and make the dielectric diffusion property increases we doped the dopant La2O3 for the 0.7PFW-0.3PT. Although, the broader peak dielectric constant is obtained as doping La2O3, the curie point moves to lower temperature.
    According to the experimental results, the very lower dielectric loss is observed as doping 5at% La2O3. The smoothest dielectric constant in the normal temperature range is obtained between x=0.3 to 0.4 in (1-x)PFW-xPT doped the 5at% dopant La2O3.
    To discuss dielectric loss and DPT in different ratio Pb(0.95)La0.05(Fe2/3W1/3)0.65Ti0.35O3 prepared by ball-milled method in two steps and direct method also in this present work .

    摘要.................................................................................................................. II ABSTRACT .................................................................................................... III 誌謝...............................................................................................................IV 第一章緒論................................................................................................. 1 1.1 研究背景與動機................................................................................. 1 1.2 論文架構............................................................................................. 4 第二章原理................................................................................................. 5 2-1.弛緩特性................................................................................................. 5 2.1.1 簡介................................................................................................... 5 2-1-2.弛緩性質(relaxor porperties)...................................................... 5 2.2 介電理論.............................................................................................. 8 2.2.1 極化機構 ........................................................................................ 8 2.2.2 介電損失方程式............................................................................ 11 2.3 PFW 的基本性質.................................................................................. 12 2.3.1 PFW 的晶體結構........................................................................... 12 2-3-2.有序-無序排列............................................................................... 13 2.3.3 PFW 的介電性質......................................................................... 15 第三章製程步驟與量測............................................................................. 16 3.1 陶瓷體的製備....................................................................................... 16 3.2 分析與測試........................................................................................... 17 3.2.1 陶瓷體特性分析與量測................................................................ 17 第四章 結果與討論..................................................................................... 19 4.1 Pb(1-y)Lay(Fe2/3W1/3)0.7Ti0.3O3 在y 不同組成的特性......................... 19 4.2 Pb0.95La0.05(Fe2/3W1/3)1-xTixO3,在x 不同組成以及燒結溫度的特性 探討.......................................................................................................... 23 4.2.1 Pb0.95La0.05(Fe2/3W1/3)1-xTixO3,在x 不同組成的特性............... 23 4.2.2 燒結溫度對Pb0.95La0.05(Fe2/3W1/3)0.75Ti0.25O3 特性的變化............ 25 4.3 不同製程對弛緩體特性的變化........................................................ 27 第五章 結論................................................................................................. 30 5.1 結論................................................................................................... 30 5.2 未來研究方向................................................................................... 31 參考文獻......................................................................................................... 32 表2-1.某些常用的弛緩體之特性....................................................... 36 表2-2.某些常用來作為電容器之弛緩體組成 .................................37 表4-1.PTLa 與(1-x)PFW-xPT 的居理溫度比較................................ 38 圖2-1(a)弛緩體之無規則性排列 (b)弛緩體A(B1B2)O3 之微結構. 39 圖2-2 正常鐵電性與弛緩體特性之差異.......................................... 40 圖2-3 PMN 的1 / ε 對 (T-Tm)2 之變化圖................................... 41 圖2-4 極化機構之示意圖.................................................................. 42 圖2-5 電子極化與原子價數之示意圖.............................................. 43 圖2-6 極化機構對不同頻率下的影響方向性極化與頻率關係圖.. 43 圖2-7 (a)電容器I - V 關係 (b)電容器等效電路.......................... 44 圖2-8 理想鈣鈦礦結構單位晶胞...................................................... 45 圖3-1 燒結的溫度曲線...................................................................... 46 圖3-2 陶瓷體製程.............................................................................. 47 圖4-1 0.7PFW-0.3PT 組成中摻雜不同La2O3 成份的密度和相對密 度之關係圖........................................................................................... 48 圖4-2 0.7PFW-0.3PT 組成中摻雜不同La2O3 成份的XRD 圖..... 49 圖4-3 0.7PFW-0.3PT 摻雜不同La2O3 成份的XRD......................... 50 圖4-4 0.7PFW-0.3PT 摻雜不同La2O3 成份的SEM 圖.................... 51 圖4-5 0.7PFW-0.3PT 摻雜不同La2O3 成份的直流電阻.................. 52 圖4-6 摻雜不同Pb1-yLay(Fe2/3W1/3)0.7Ti0.3O3 組成中La 濃度y=0~10% 的介電常數、介電損失圖(f=100kHz) ............................................... 53 圖4-7 摻雜不同Pb1-yLay(Fe2/3W1/3)0.7Ti0.3O3 組成中介電常數、介電損 失圖(f=1k~500kHz)(a) y=0%(b) y=1%............................................... 54 圖4-7 摻雜不同Pb1-yLay(Fe2/3W1/3)0.7Ti0.3O3 組成中介電常數、介電損 失圖(f=1k~500kHz)(c)y=3%(d)y=5%................................................. 55 圖4-7 摻雜不同Pb1-yLay(Fe2/3W1/3)0.7Ti0.3O3 組成中介電常數、介電 損失圖(f=1k~500kHz)(e) y=8%(f) y=10%.......................................... 56 圖4-8 Pb0.95La0.05(Fe2/3W1/3)1-xTixO3 (PTLa01~04)PTLa01~04 密度和 相對密度 之關係圖............................................................................. 57 圖4-9 Pb0.95La0.05(Fe2/3W1/3)1-xTixO3 (PTLa01~04)的 XRD 圖.......... 58 圖4-10 Pb0.95La0.05(Fe2/3W1/3)1-xTixO3 (PTLa01~04)的SEM 圖……..59 圖4-11 Pb0.95La0.05(Fe2/3W1/3)1-xTixO3x=0.1~0.4(PTLa01~04)時的介電 常數、介電損失圖(f=100kHz)............................................................ 60 圖4-12 Pb0.95La0.05(Fe2/3W1/3)0.65TixO0.35 在不同燒結溫度的密度和相 對密度之關係圖................................................................................... 61 圖4-13 PTLa035 在不同燒結溫度的XRD 圖................................ 62 圖4-14 PTLa035 在不同燒結溫度的XRD 圖 2θ=45~48°.......... 63 圖4-15 PTLa035 在不同燒結溫度的SEM 圖................................ 64 圖4-16 PTLa035 在不同燒結溫度的直流電阻分布圖.................. 65 圖4-17 Pb0.95La0.05(Fe2/3W1/3)0.65Ti0.35O3(PTLa035)在不同燒結溫度的 介電常數、介電損失圖(f=100kHz) ................................................... 66 圖4-18 摻雜不同Pb1-yLay(Fe2/3W1/3)0.7Ti0.3O3 組成中介電常數、介電損失圖(f=1k~500kHz) ......................................................................... 69 圖4-19 ball-mixed (PTLa0304)、ball-mixed (PTLa02030405)與直接合 成PTLa035 的XRD 圖....................................................................... 69 圖4-20 PTLa0.35 及ball-mixed 的SEM 圖...................................... 70 圖4-21 PTLa0304、PTLa02030405 與直接合成PTLa035 的介電常數 與介電損失對溫度的關係圖.............................................................. 71 圖4-22 間接合成法所制備的PTLa 其介電常數和介電損失圖…..72

    [1] V. Sivasubramanian, Appl.Phys.Lett.85(2004)5.
    [2] H. Wang,B. Jiang, IEEE51(2004)7.
    [3] Y. Hou, M. Zhu, F. Gao, J.Am.Ceram.Soc.87(2004)847.
    [4] L. Mitoseriu, P.M. Vilarinho, Mate.Lett.57(2002)609.
    [5] L. Mitoseriu, J.Appl.Phy.94(2003)3.
    [6] L. Mitoseriu,J.L. Baptista, J.Appl.Phy.41(2002)7015.
    [7] G. Drazic, J Mate Sci, v 28, n 16, Aug 15, 1993, p 4405-4411
    [8] S. Khim, Solid State Ionics, v 127, n 3-4, Jan, 2000, p 285-293
    [9] G. Drazic, J Mate Sci, v 25, n 5, May, 1990, p 2590-2594
    [10] Xi. Zong, J Fun Mates, v 37, n 3, March, 2006, p 383-385+388
    [11] Xi. Zong, Mates Res Bull, v 41, n 8, Aug 10, 2006, p 1447-1454
    [12] X. Chao, Sensors and Actuators, A: Physical, v 141, n 2, Feb 15, 2008, p 482-488
    [13] Z. Yang, Mate Res Bull, v 43, n 1, Jan 8, 2008, p 38-44
    [14] B. Lee, Ferroelectrics, v 211, n 1-4, 1998, p 233-247
    [15] L. Feng, J Mate Res , v 22, n 8, August, 2007, p 2116-2124
    [16] L. Zhou, Key Engineering Mates, v 132-136, n Pt 2, 1997, p 1080-1083
    [17] 劉士山 ’’ 製程對弛緩性鐵電陶瓷PMN特性之影響 ’’
    [18] 吳朗, ’’ 電子陶瓷(介電) ’’ 全欣科技圖書, (1994)223.
    [19] L.E. Cross,"Relaxor Ferroelectric“, Ferroelectric, 76 (1987) 241
    [20] Y. C. Liou,"Effect of heating rate on properties of Pb(Mg1/3Nb2/3)O3 ceramics produced by the reaction sintering process", Mater. Lett. 58 (2004) 944
    [21] W. Z. Zhu, A. Kholkin, P.Q. Mantas and J. L. Baptista,"Effect of lanthanum-doping on the dielectric and piezoelectric properties of PZN-base MPB composition", J. Mater. Sci., 36(2001) 4089
    [22] M. W. Barsoum, “Fundamentals of Ceramics”, McGraw-Hill, Singapore, p526-543 (1997)
    [23] 吳朗, ’’ 電子陶瓷(介電) ’’ 全欣科技圖書, (1994)227.
    [24] T.R. Shrout,A. Halliyal,Am.Ceram.Soc.66(1987)704.
    [25] 吳朗, ’’ 電子陶瓷(介電) ’’ 全欣科技圖書, (1994)69.
    [26] B. Jaffe,W.R. Cook,H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio, (1971).
    [27] C.C.Tseng,J.Appl.Phys,38(1967)4281.
    [28] 吳朗,”弛緩體”電子陶瓷,全欣資訊, (1994)227.
    [29] L. Mitoseriu, Appl.Phys.Lett.81(2002)26.
    [30] A. Amin, R. E. newnham, L.E. Cross and S. Nomura, “ Ordering in Pb(Mg1/2Nb2/3)O3-Pb(Mg1/2W1/2)O3", J. Solid State Chem., 35 (1990) 267
    [31] A. Amin, R. E. newnham, L.E. Cross and S. Nomura, “ Ordering in Pb(Mg1/2Nb2/3)O3-Pb(Mg1/2W1/2)O3", J. Solid State Chem., 35 (1990) 267
    [32] F. Galasso and W. Darby, S. Phys. Chem. 66 (1962) 131
    [33] I.T.Kim, K.S.Hong, and S. J.Yoon, “Effects of non-stoichiometry and chemical inhomogeneity on the order–disorder phase formation in the Complex perovskite compounds Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3”, J. Mater. Sci., 30 (1995) 514.
    [34] Z. Xie,Z. Gui,,Mate.Lett.36(1998)191.
    [35] L. Ruan,L. Li,Z. Gui,J.Mate.Sci.Lett. 16(1997)1020.
    [36] S. Wagner,D. Kahram
    [37] B. Jaffe,W.R. Cook,H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio, (1971).
    [38] P.M. Vilarinho,L. Zhou,J.Am.Ceram.Soc.83(2000)1149.
    [39] P.M. Vilarinho, P.Q.Manta, ;J.European.Ceram.Soc, v 20, n 8, Jul, 2000, p 1035-1041
    [40] B. Fang, Y. Shan and H. Imoto, Charge Compensation Mechanism Decreases Dielectric Loss in Manganese-Doped Pb(Fe1/2Nb1/2)O3 Ceramics. Jpn. J. Appl. Phys., 2004, 43, 5A, 2568–2571.
    [41] L. Zhou, P. M. Vilarinho and J. L. Baptista, Effects of annealing treatment on the dielectric properties of manganese-modified Pb(Fe2/3W1/3)O3 ceramics. J. Mater. Sci., 1998, 33, 2673-2677.
    [42] L. Mitoseriu, P. M. Vilarinho , M. Viviani and J. L. Baptista, Structural study of Pb(Fe2/3W1/3)O3-PbTiO3 system. Mater. Lett., 2002, 57, 609-614.X.G. Tang,H.L.W. Chan,J.Appl.Phy, (2005)97.
    [43] J.P. Guha,G.H. Haertling,J.Mate.Sc.32(1997)3753.
    [44] Y.C. Liou,J.Elec.12(2004)187.
    [45] Y.C. Liou,J.Elec.13(2004)453.
    [46] A. Tkach,P.M. Vilarinho,A.L. Kholkin, Appl.Phys.Lett(2005)86.
    [47] G.A . Smolenskii and V.A. Isupov, Dokl.Akad.Nauk SSR,8, (1954)1375.

    下載圖示 校內:2018-07-30公開
    校外:2018-07-30公開
    QR CODE