| 研究生: |
邱耀達 Chiou, Yaw-Dar |
|---|---|
| 論文名稱: |
直立堤面衝擊波力與衝升時間聯合機率分佈特性之研究 Joint Probability Distribution of Impulsive Wave Forces and Rising Time on Vertical Breakwater |
| 指導教授: |
簡仲和
Chien, Chung-Ho |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 溢出型碎波 、衝擊波力 、衝升時間 、聯合機率分佈 、捲波形碎波 |
| 外文關鍵詞: | Joint probability distribution, Plunging breaker, Spilling breaker, Impulsive wave force, Rising time |
| 相關次數: | 點閱:131 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文係以規則波模型實驗,於斷面水槽中拍打七種相對水深d/Lo之碎波波浪條件;碎波型態涵蓋捲波型(plunging)、過渡型(transitional)及溢出型(spilling)。實驗以直接擷取波力資料之方式,探討碎波作用於緩坡上直立堤時,衝擊波力(impulsive wave force)與衝升時間(rising time)之聯合機率分佈特性。
實驗之前,首先以40,000Hz擷取速率獲得捲波型碎波衝擊波力之時系列數據,進行一系列之隨機擷取模擬,以檢定最大衝擊波力偏差與擷取頻率之相關性;結果顯示,高於400Hz擷取頻率所擷取之波力較具有代表性,本文則以2,500Hz作為所有波力實驗之擷取頻率,其擷取最大衝擊波力之偏差經檢定已小於0.3%。
各試驗所擷取之衝擊波力經以波力形狀量化定義及其相關統計參數之信賴度區間檢定;同時考量Goda(1985)建議有關樣本數大小限制之下,選定衝擊波力波形中第一峰值對第二峰值之比F1/F2=1.5作為閥值(threshold),各衝擊波力波形大於此一閥值者始通過檢定,用於後續衝擊波力與衝升時間之聯合機率分佈分析。
經一系列實驗值與理論聯合機率分佈之比較分析,結果顯示雙常態密度函數頗適於無因次衝擊波力與衝升時間聯合機率分佈型態之描述;本文並據以迴歸出雙常態密度函數中各機率參數與相對水深d/Lo、波浪尖銳度 之關係式;同時,提擬以此聯合機率分佈函數用予推估衝擊波力之流程,經以現場設計條件作為應用例,實際說明不同發生機率衝擊波力之推估方式,並與Hiroi(1920)、Minikin(1950)、Nagai(1960)、Mitsuyasu(1962)、Goda(1985)等衝擊波壓公式計算值作比較,結果顯示本文有關衝擊波力與衝升時間聯合機率分佈之研究成果頗為合理。
Regular wave model tests are carried out with 7 kinds of relative depth d/Lo to investigate the joint probability distribution of impulsive forces and rising time for plunging, transitional and spilling breakers on vertical breakwater.
In the model tests, the acquisition rate in model tests was set as 2,500Hz, from which an estimated maximum deviation of impulsive force was below 0.3%. Through a sequence of investigations on deviation of maximum force via acquisition rate for a time series of impulsive forces obtained in a rate of 40,000Hz.
Morover, with confidence interval tests on waveform and statistic parameters of impulsive force data and sample size limitation of data suggested by Goda(1985), impulsive force data were collected to perform the probability analysis by setting a threshold of 1.5 on F1/F2, ratio of first peak to second peak in a waveform of impulsive force.
Based on a series of comparisons of the theoretic and experimental distribution, it was found that the bivariate normal density function could present the joint probability distribution of dimensionless impulsive force and rising time quite well. Meanwhile, parametric formula was regressed with relative water depth d/Lo and wave steepness to estimate the statistic parameters of bi-variate normal density function. Furthermore, a design process on the basis of joint probability distribution was suggested to estimate the impulsive force of plunging wave on breakwaters. The illustrative examples were presented and the results were compared with the formulas presented in Hiroi(1920), Minikin(1950), Nagai(1960), Mitsuyasu(1962) and Goda(1985). It was shown that the design process on the basis of joint probability distribution is quite reasonable.
1. Bagnold, R.A., 1939. Interim report on wave-pressure research. Journal of ICE, Vol. 12, No.7, 202-226.
2. Battjes, J.A., 1974. Surf similarity. Proceeding of 14th Coastal Engineering Conference, ASCE, pp. 466-480.
3. Blackmore, P.A., Hewson, P.J., 1984. Experiments on full scale wave impact pressures. Coastal Engineering, vol 8, Elsevier Science Publishers B.V., pp. 331-346.
4. Chan, E.S., 1986. Deep water breaking wave forces on structures. Sc. Thesis. Massachusetts Institute of Technology.
5. Denny, D.F., 1951. Further experiments on wave pressures. Journal of ICE, Vol. 35, No.4, 330-345.
6. Franco, L., 1994. Vertical breakwaters: the Italian experience. Coastal Engineering, Elsevier, Amsterdam, vol. 22, pp. 30-55
7. Frigaard, P., Burcharth, H. F., Kofoed, J. P., 1998. Wave impact on caisson breakwaters situated in multidirectionally breaking seas. Proceeding of 26th Coastal Engineering conference, pp. 1959-1971.
8. Führböter, A., 1986. Model and prototype tests for wave impact and run-up on a uniform 1:4 slope. Coastal Engineering, Vol.10, pp.49-84.
9. Galvin, C.J., 1968. Breaker type classification on three laboratory beaches. J. Geophys. Res., 73(12), pp. 3651-3659.
10. Galvin, C.J., 1972. Wave breaking in shallow water, Wave on Beaches and Resulting Sediment Transport, edited by R. E. Meyer, pp. 413-456.
11. Goda, Y., 1974. New wave pressure formula for composite breakwater, Proceeding of 14th Coastal Engineering Conference, ASCE, pp.1702-1720.
12. Goda, Y., 1985. Random Seas and Design of Maritime Structures. University of Tokyo press.
13. Grüne, J., 1988. Wave-induced shock pressures under real sea state conditions. Proceeding of 21th Coastal Engineering conference, ASCE, pp. 1829-1848.
14. Hattori, M., Arami, A., 1992. Impact breaking wave pressures on vertical walls. Proceeding of 23th Coastal Engineering Conference, pp. 1785-1798.
15. Hattori, M., Arami, A., Yui, T., 1994. Wave impact pressure on vertical walls under breaking waves of various types. Coastal Engineering, Elsevier, Amsterdam, vol. 22, pp. 79-114.
16. Hayami, S., 1958. Type of breakers, wave steepness and beach slope. Coastal Engineering in Japan, vol. 1, pp. 21-23.
17. Hayashi, T., Hattori, M., 1958. Pressure of the breaker against a vertical wall. Coastal Engineering in Japan, vol. 1, pp. 25-37.
18. Hayashi, T., Hattori, M., 1961. Stability of the breakwater against sliding due to pressure of breaking waves. Coastal Engineering in Japan, vol. 4, pp.23-33.
19. Hiroi, I., 1919. On a method of estimating the force of waves,” Memoirs of Engg. Faculty, Imperial Univ. Tokyo, vol. X, No.1, pp.19.
20. Hiroi, I., 1920. The Force and Power of Wave, Engineer, pp. 184-185.
21. Hitachi, S., 1994. Case study of breakwater damage – Mutsu-Ogawara Port. Proceeding of International Workshop on Wave Barriers in Deepwaters, Port and Harbour Research Institute, Yokosuka, Japan, pp. 308-331
22. Ito, Y., 1971. Stability of mix-type breakwater- a method of probable sliding distance. Coastal Engineering in Japan, vol. 14, 53-61.
23. Iversen, H. W., 1952. Waves and breakers in shoaling water. Proceeding of 3rd Coastal Engineering Conference, pp. 1-12.
24. Kamel, A.M.,1968. Water wave pressures on seawalls and breakwaters. Research report no. 2-10, U. S. Army Engineer Waterways Experiment Station, CORPS of ENGINEERS.
25. Kamel, M.A., 1970. Shock pressure on coastal structures. Proceeding of ASCE, Waterways, Harbors Coastal Engineering Division 96, pp. 689-699
26. Kana, T.W., 1979. Suspended sediment in breaking waves. Tech. Report No. 18-C.R.D., Coastal Res. Div., Dep. Of Geology, Univ. of South Carolina, Columbia, USA.
27. Kirkgöz, M.S., 1982. Shock pressure of breaking waves on vertical walls. Journal of the Waterway, Port, Coastal and Ocean Division, ASCE, vol. 108, No. ww1, 81-95.
28. Kirkgöz, M.S., 1990. An experimental investigation of a vertical wall response to breaking wave impact. Ocean Engineering, vol. 17, No. 4, pp. 379-391.
29. Kjeldsen, S.P., 1968. Bølge brydning, fysisk beskrivelse(Wave breaking, Physical description, in Danish). M. Sc. Thesis. Techn. Univ. Denmark.
30. Klammer, P., Kortenhaus, A., Oumeraci, H., 1996. Wave impact loading of vertical face structures for dynamic stability analysis- prediction formula. Proceeding of 25th Coastal Engineering conference, pp. 2534-2547.
31. Kuribayashi, T., Muraki, Y., Udai, G., 1959. Field investigation of wave forces on breakwater. Coastal Engineering in Japan, vol. 2, 17-27.
32. Le Méhauté, B., Koh, R.C.Y., 1967. On the breaking of waves arriving at an angle to the shore. J. Hydraul. Res., Vol. 5, No.1, 67-88.
33. Massel, S.R., Oleszkiewicz, M., Trapp, W., 1978. Impact wave foeces on vertical and horizontal plate. Proceeding of 16th Coastal Engineering Conference, pp. 2340-2359.
34. Mckenna, J., Allsop, W., 1998. Statistical distribution of horizontal wave forces on vertical breakwaters. Proceeding of 26th Coastal Engineering conference, pp. 2082-2095.
35. Minikin, R.R., 1950. Winds Waves and Maritime Structures, Charles Griffen, London.
36. Mitsuyasu, H., 1962. Experimental study on wave force against sea wall. Coastal Engineering in Japan, vol. 5, 23-47.
37. Mitsuyasu, H., 1966. Shock pressure of breaking wave. Proceeding of 10th Coastal Engineering conference, ASCE, vol. 2, pp. 268-283.
38. Mogridge, G.R., Jamieson, W.W., 1980. Wave impact pressures on composite breakwaters. Proceeding of 17th Coastal Engineering conference, ASCE, pp. 1829-1848.
39. Müller, G.U., Whittaker, T.J.T., 1993. An investigation of breaking wave pressures on inclined wall. Ocean Engineering, vol. 20, No. 4, pp. 349-358.
40. Nagai, S., 1960. Shock pressures exerted by breaking waves on breakwaters. Coastal Engineering in Japan, vol. 4, 23-33.
41. Oumeraci, H., 1994. Review and analysis of vertical breakwater failures - lessons learned. Coastal Engineering, Elsevier, Amsterdam, vol. 22, pp. 3-29
42. Oumeraci, H., Kortenhaus, A., Klammer, P., 1995. Displacement of caisson breakwaters induced by breaking wave impact. Proceeding of the Conference on Coastal Structures and Breakwaters, ICE, London, U.K., Thomas Telford Ltd.
43. Partenscky, H.W., 1988. Dynamic forces due to waves breaking at vertical coastal structures. Proceeding of 21th Coastal Engineering conference, pp. 2504-2518.
44. Plakida, M.E., 1970. Pressure of wave against vertical wall. Proceeding of 12th Coastal Engineering Conference., Vol.3.
45. Sawaragi, T., Nochino, M., 1984. Impact forces of nearly breaking waves on a vertical circular cylinder. Coastal Engineering in Japan, vol. 27, pp. 249-263.
46. Schmidt, R., Oumeraci, H., Partenscky, H.-W, 1992. Impact loads induced by plunging breakers on vertical structure. Proceeding of 23th Coastal Engineering conference, pp. 1545-1558.
47. Smith, A.W., 1990. A re-analysis of field measurements of breaking wave pressures on impervious sloping revetment wall. Shore and Beach, pp. 29-30.
48. Takahashi, S., Tanimoto, K., Shimosako, K.I., 1993. Experimental study of impulsive pressures on composite breakwaters. Report of Port and Harbour Research Institute(PHRI), vol. 31, no.5, Tokyo, Japan, pp.33-72.
49. Takahashi, S., Tsuda, M. etc. 1998. Experimental and FEM simulation od dynamic response of a caisson wall against breaking wave impulsive pressures. Proceeding of 26th Coastal Engineering Conference.
50. Tanimoto, K., Takahashi, S., 1994. Japanese experience on composite breakwaters. Proceeding of International Workshop on Wave Barriers in Deepwaters, Port and Harbour Research Institute, Yokosuka, Japan, pp. 1-24.
51. Walpole, R.E., Meyer, R.H., 1998. Probability and statistics for engineers and scientists. Prentice Hall.
52. Weggel, J, 1972. Maximum breaker height. Proc. ASCE, Journal of Waterways, Harbors Coastal Engineering Division, WW4, pp. 529-548.
53. Weggel, J.R., Maxwell, W.H., 1970. Numerical model for wave pressure distribution. Proc. ASCE, Journal of Waterways, Harbors Coastal Engineering Division, WW3, pp. 623-641.
54. Wiegel, R. L., 1964. Oceanographical Engineering. Prentice Hall, New Jersey, pp. 532.
55. 洪華生、鄧漢忠,1991,工程或然率,中國土木工程協會。
56. 游于正,1990,不規則波碎波壓力之試驗研究,國立成功大學水利及海洋工程研究所碩士學位論文。
57. 簡仲和、邱耀達,1992,作用於緩波上直立堤之衝擊波力研究,港灣技術,第七期,第49-64頁。
58. 簡仲和、賴建宏,1994,不規則波作用於開孔胸牆防波堤之衝擊波壓力研究,行政院國家科學委員會專題研究計劃成果報告,NSC79-0414-P-006-39。