| 研究生: |
蔡宗傑 Tsai, Tzung-Jie |
|---|---|
| 論文名稱: |
自成份硫化物中間層對銅鋅錫硫太陽能電池吸收層之影響 Comparative study of self-constituent intermediate layers(CuS,SnS,ZnS) for synthesis Cu2ZnSnS4 thin films |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 銅鋅錫硫 、薄膜太陽能電池 、介面接合性 |
| 外文關鍵詞: | Cu2ZnSnS4 (CZTS), Thin film solar cell, Adhesion |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Cu2ZnSnS4(CZTS)是一種有潛力的吸收材料,因為它的成分在地表含量豐富且無毒,它主要的難題是在製程高效率的太陽能電池中,吸收層與鉬基板之間接觸面的接合性不佳,易造成孔隙與裂縫,為了解決這個問題,我們嘗試在鉬基板與吸收層之間摻入一層自成份硫化物中間層CuS、SnS、ZnS來改善接觸面特性,藉由XRD、SEM、TEM等量測分析。
本研究發現當摻入自成份硫化物中間層時將有效改善鉬基板與吸收層之間的接觸面特性,然而一些問題卻會浮現,譬如當摻入CuS中間層時,底部的銅空缺問題將會嚴重擴大,當摻入ZnS中間層時則將ZnS這個二次相存留下來;最有潛力的選擇是SnS中間層,在結晶性、接觸面特性都有明顯改良,且在元件的效率上有所提升,將是CZTS太陽能電池中間層的有利選擇之一。
Cu2ZnSnS4 (CZTS) is a promising absorber material because of its earth abundant and non-toxic constituents. The major challenge for synthesis the high-efficiency CZTS solar cell is the high-density voids and secondary phases at the interface of the CZTS absorber and the Mo back contact. To overcome this problem, we comparatively study the effect of inserting a self-constituent intermediate layer such as CuS, SnS and ZnS between the CZTS and Mo substrate. Influences of these interlayer materials on the phase purity, crystallinity, interface quality and elementary segregation of the CZTS films made by metal precursors were presented. A crack-free, pinhole-free, and high quality CZTS thin film was obtained by insertion of a SnS buffer layer.
[1] D. Lidgate, “Green energy?,” Engineering Science and Education Journal, vol. 1 pp.221-227, 1992
[2] E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires,” Comptes Rendus des Séances Hebdomadaires, vol 9, pp.561-567, 1839
[3] D. M. Chapin, C. S. Fuller and G. L. Pearson “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, pp.676, 1954
[4] D. C. Reynolds, G. Leies, L. L. Antes, and R. E. Marburger, “Photovoltaic Effect in Cadium Sulfide,” Physical Review, vol. 96, pp.533, 1954
[5]M.A.Green,”solar cell efficiency tables(Version 17),progress in Photovoltaics:
Research and Application,” vol.9, pp.49-56,2001
[6] K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-Film Solar Cells: An Overview,” Prog. Photovolt: Res. Appl. vol. 12. pp.69-92, 2004
[7] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W.
Wischmann and M. Powalla, Prog. Photovolt: Res. Appl., 2011, 19, 894.
[8] S. M. Sze, “Physics of Semiconductor Devices,” New York, 1981
[9] A. L. Fahrenbruch, “Fundamental of Solar Cells: Photovoltaic Solar Energy Conversion,” Academic Press, 1993
[10] 沈義評, “前驅物結構對於CZTSe薄膜太陽能電池影響之探討”,國立成功大學, 2014
[11] G. Gogoi, S. Arora, N. Vinothkumar, M. De and M. Qureshi, RSC Adv., 2015, 5,
40475.
[12] J. P. Leitao, N. M. Santos, P. A. Fernandes, P. M. P. Salome, A. F. DaCunha, J. C.
Gonzalez, G. M. Ribeiro and F. M. Matinaga, Phys.Rev. B, 2011, 84, 024120.
[13] G. Y. Kim, A. R. Jeong, J. R. Kim, W. Jo, D.H. Son, D. H. Kim, J. K. Kang, “Surface potential on grain boundaries and intragrains of highly efficient Cu2ZnSn(S,Se)4 thin-films grown by two-step sputtering process,” Solar Energy Materials and Solar Cells vol. 127, pp.129-135, 2014
[14] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Manna, W. C. Hsu, A. Goodrich, R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Solar Energy Materials and Solar Cells, vol 101, pp.154-159, 2012
[15] A.V. Moholkar, S.S. Shinde, G.L. Agawane, S.H. Job, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, “Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency,” Journal of Alloys and Compounds vol. 544, pp.145-151, 2012
[16] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey and Supratik Guha,”Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber,” Progress in Photovoltaics: Research and Applications vol. 21, pp.72-76, 2013
[17] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov and David B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Energy & Environmental Science, vol. 5, pp.7060-7065, 2012
[18] M. Z. Ansari and N. Khare, J. Phys. D: Appl. Phys., 2014, 47, 185101.
[19] S. M. Camara, L. Wang and X. Zhang, Nanotechnology, 2013, 24, 495401.
[20] L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V. R. Deline, S. Ahmed, L. T.
Romankiw and H. Deligianni, Prog. Photovolt: Res. Appl., 2014, 22, 58.
[21] K. Tanaka, M. Oonuki, N. Moritake and H. Uchiki, Sol. Energy Mater. Sol.
Cells,2009, 93, 583.
[22] J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam and K. H. Kim, Sol. Energy Mater.
Sol.Cells, 2003, 75, 155.
[23] C. Shi, G. Shi, Z. Chen, P. Yang and M. Yao, Mater. Lett., 2012, 73, 89.
[24] K. Moriya, K. Tanaka and H. Uchiki, Jpn. J. Appl. Phys., 2007, 46, 5780.
[25] N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 2007, 515, 5949.
[26] J. J. Scragg, J. T. Wätjen, M. Edoff, T. Ericson , T. Kubart and C.
Platzer-Björkman, J. Am. Chem. Soc., 2012, 134, 19330.
[27] K. Zhang, Z. Su, L. Zhao, C. Yan, F. Liu, H. Cui, X. Hao and Y. Liu, Appl. Phys.
Lett., 2014, 104, 141101.
[28] B. Shin, N. A. Bojarczuk and S. Guha, Appl. Phys. Lett., 2013, 102, 091907.
[29] T. P. Dhakal, C. Y. Peng, R. R. Tobias, R. Dasharathy and C. R. Westgate, Solar
Energy, 2014, 100, 23.
[30] A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr and H. W.
Schock, Thin Solid Films, 2009, 517, 2524.
[31] A. Weber, R. Mainz and H. W. Schock, J. Appl. Phys., 2010, 107, 013516.
[32] J. J. Scragg, T. Ericson, T. Kubart, M. Edoff and C. Platzer-Björkman, Chem.
Mater., 2011, 23, 4625.
[33] S. López-Marino, M. Placidi, A. Pérez-Tomás, J. Llobet, V. Izquierdo-Roca, X.
Fontané, A. Fairbrother, M. Espíndola-Rodríguez, D. Sylla, A. Pérez-Rodríguez
and E. Saucedo, J. Mater. Chem. A, 2013, 1, 8338.
[34] J. J. Scragg, T. Kubart, J. T. Wätjen, T. Ericson, M. K. Linnarsson and C.
Platzer-Björkman, Chem. Mater., 2013, 25, 3162.
[35] F. Liu, K. Sun, W. Li, C. Yan, H. Cui, L. Jiang, X. Hao and M. A. Green, Appl.
Phys. Lett., 2014, 104, 051105.
[36] H. Cui, X. Liu, F. Liu, X. Hao, N. Song and C. Yan, Appl. Phys. Lett., 2014, 104,
041115.
[37] 吳世雄, “濺鍍製備CIGS太陽能電池及特性分析”,國立成功大學, 2010
[38] H. Zhou, T. B. Song, W. C. Hsu, S. Luo, S. Ye, H. S. Duan, C. J. Hsu, W. Yang,
and Y. Yang, “Rational Defect Passivation of Cu2ZnSn(S,Se)4 Photovoltaics with
Solution-Processed Cu2ZnSnS4:Na Nanocrystals,” Journal of the American
Chemical Society, 135, 15998−16001, 2013
[39] J. J. Scragg, J. T. Wätjen, M. Edoff, T. Ericson , T. Kubart and C. Platzer-Björkman, “J. Am. Chem. Soc.”, 2012, 134, 19330.
[40] Yu K, Carter EA. “Chem Mater.” 2015;27:2920-7
[41] Liu X, Mayer MT, Wang D. “Angew Chem Int Ed Engl.” 2010;49:3165-8
[42] H. Yoo, J. Kim and L. Zhang, Curr. Appl. Phys., 2012, 12, 1052.
[43] K. Ito, Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, p.121 (USA,
Wiley, 2014).
[44] B. T. Jheng, P. T. Liu and M. C. Wu, “Sol. Energy Mater. Sol. Cells “, 2014, 128, 275.
[45] N. Muhunthan, O. P. Singh, S. Singh and V. N. Singh,” Int. J.Photoenergy ” ,2013, 2013, 752012.
[46] W. Bao and M. Ichimura, “Int. J. Photoenergy”, 2015, 2015, 592079.
[47] W. Li, J. Chen, C. Yan, F. Liu and X. Hao, “Nanotechnology”, 2014, 25, 195701
[48] S. Delbos, “Kesterite thin films for photovoltaics: a review,” EPJ Photovoltaics,
pp.335004, 2012
[49]S. Chen, A. Walsh, X. G. Gong, and S. H. Wei ,”Classification of Lattice Defects
in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant SolarCell
Absorbers,” Advanced Materials, 25, 1522–1539, 2013
[50] X.Min, Z. Daming , Z.Ming, Z. Zuolong , O.Liangqi , L. Xiaolong,and S.Jun ,”
Int. J. Photoenergy” , 2013, 929454, 9
[51] S. A. Holgate,“Understanding Solid State Physics” (UK,Taylor & Francis,
2009).
[52] U. Dasgupta, S. K. Saha and A. J. Pal, “Sol. Energy Mater. Sol. Cells”, 2014,
124, 79.
[53] T. P. Dhakal, C.Y. Peng, R. R. Tobias, R. Dasharathy and C. R. Westgate, “Sol.
Energy”, 2014, 100, 23.