| 研究生: |
林祈宏 Lin, Ci-Hong |
|---|---|
| 論文名稱: |
新型一次側控制半橋諧振轉換器之設計與研製 Design and Implementation of Half-Bridge Resonant Converter with Novel Primary-Side Control |
| 指導教授: |
梁從主
Liang, Tsrong-Juu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 一次側控制 、半橋諧振轉換器 、電壓估測 、電流估測 |
| 外文關鍵詞: | primary-side control, half-bridge resonant converter, output voltage estimation, output current estimation |
| 相關次數: | 點閱:68 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統隔離型諧振式轉換器藉由光耦合器迴授二次側輸出訊號,但是光耦合器的特性易受環境影響且有較高的待機損失。本論文提出新型一次側控制隔離型半橋諧振轉換器之輸出電壓與電流估測技術可操作於LLC或SRC區間,藉由輔助繞組之電壓取樣以估測輸出電壓,並透過偵測諧振電流再取其積分至變壓器解耦時以估測輸出電流。本論文首先分析半橋諧振轉換器之動作模式及重要元件參數之設計準則,再利用本論文所提出之一次側控制技術,以估測輸出電壓與電流。最後,實作一輸出額定功率為100 W、輸出電壓為24 V以及應用於輸入電壓280 V ~ 342 V之實驗雛形,並由數位信號處理器作為控制器驗證本論文所提出之一次側估測技術。實驗結果顯示輸出電壓與輸出電流可分別控制於誤差1% 與8%以下,最高系統效率為95.2%。
The opto-coupler is usually used for isolated resonant converter to feedback the secondary-side output information. However, the characteristics of the opto-coupler are easily affected by the operating conditions and will cause higher standby power loss. In this thesis, a novel primary-side controlled isolated half-bridge resonant converter with output voltage and current estimation for LLC and SRC operations is presented. The output voltage is estimated through the sampling of the auxiliary winding voltage, the output current is estimated by integrating the resonant current until the transformer decoupled. The operating principles of the half-bridge resonant converter and the design criteria of the key component parameters are addressed and analyzed. Also, the methods for estimating output voltage and output current are discussed in detail. Finally, an experimental prototype with rated power 100 W half-bridge resonant converter for input voltage 280-342 V and output voltage 24 V is built with micro-controller to validate the proposed primary side estimation technique. Experimental results show the output voltage and current can be controlled with the error less than 1% and 8%, respectively. The highest efficiency of the system is 95.2%.
[1] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. IEEE APEC, 2002, pp. 1108-1112.
[2] D. Huang, D. Gilham, W. Feng, P. Kong, D. Fu, and F. C. Lee, “High power density high efficiency DC/DC converter,” in Proc. IEEE ECCE, Sep. 2011, pp. 1392-1399.
[3] K. B. Park, C. E. Kim, G. W. Moon, and M. J. Youn, “A new high efficiency PWM single-switch isolated converter,” Journal of Power Electron., vol. 7, no. 4, pp. 301-309, Oct. 2007.
[4] C. Oeder, “Analysis and design of a low-profile LLC converter,” in Proc. IEEE ISIE, Jul. 2010, pp. 3859-3864.
[5] R. P. Severns, “Topologies for three-element resonant converters,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 89-98, Jan. 1992.
[6] H. Choi, “Analysis and Design of LLC Resonant converter with integrated transformer”, in Proc. IEEE APEC, 2007, p. 1630-1635.
[7] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies”, IEEE Trans. on Power Electron., p. 174-182, 1988.
[8] B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system” Ph.D. dissertation, Dept. Elect. Eng., Virginia Tech, Blacksburg, VA, Sep. 2003.
[9] J. H. Jung and J. G. Kwon, “Theoretical analysis and optimal design of LLC resonant converter,” in Proc. European Conf. on Power Electron. and Appl., 2007, pp. 1-10.
[10] J. Shen, T. Liu, Y. Wu, and Q. Zheng, “Constant current LED driver based on flyback structure with primary side control,” in Proc. IEEE PEAM, 2011, pp. 260-263.
[11] X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4602-4612, Nov. 2012.
[12] J. Zhang, H. Zeng, and T. Jiang, “A primary-side control scheme for high power-factor LED driver with TRIAC dimming capability,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4619-4629, Nov. 2012.
[13] C. W. Chang and Y. Y. Tzou, “Primary-side sensing error analysis for flyback converters,” in Proc. IEEE IPEMC, 2009, pp. 524-528.
[14] Y. T. Lin and T. J. Liang, “IC design of primary-side control for flyback converter,” in Proc. IEEE IFEEC, 2013, pp. 449-453.
[15] P. C. Hsieh, C. J. Chang, C. L. Chen, “A primary-side control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching,” in Proc. IEEE ECCE, 2013, pp. 3406-3412.
[16] Y. Bai, W. Chen, Xiaoyu Yang, Xu Yang, and J. Sun, “A novel constant current and constant voltage adaptive blanking regulation scheme for primary-side controlled flyback converter,” in Proc. IEEE IPEMC, 2016, pp. 1652-1659.
[17] C. N. Wu, Y. L. Chen, and Y. M. Chen, “Primary-side peak current measurement strategy for high-precision constant output current control,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 967-975, Feb. 2015.
[18] X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback led driver,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4602-4612, Nov. 2012.
[19] Y. Leng, Y. Wang, J. Jiang, and L. He, “A primary-side controlled single-stage flyback LED driver with high power factor and high accuracy,” in Proc. IEEE IFEEC, 2013, pp. 293-298.
[20] H. H. Chou, Y. S. Hwang, and J. J. Chen, “An adaptive output current estimation circuit for a primary-side controlled LED driver,” in IEEE Trans. on Power Electron., vol. 28, no.10, pp. 4811-4819, Oct. 2013.
[21] J. S. Li, T. J. Liang, K. H. Chen, Y. J. Lu, and J. S. Li, “Primary-side controller IC design for quasi-resonant flyback LED driver,” in Proc. IEEE ECCE, 2015, pp. 5308- 5315.
[22] T. J. Liang, K. H. Chen, and J. F. Chen, “Primary side control for flyback converter operating in DCM and CCM,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3604-3612, May 2017.
[23] J. B. Lee, C. E. Kim, J. K. Kim, J. H. Kim, S. C. Moon, and G. W. Moon, “A novel accurate primary-side control (PSC) method for half-bridge (HB) LLC converter,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1797-1803, Apr. 2015.
[24] REDiSEM, “RED2501 LED Controller for LLC Converters,” 2016.
[25] Y. H. Huang, T. J. Liang, and W. J. Wu, ‘‘Analysis and implementation of half-bridge resonant capacitance LLC converter,’’ in Proc. IEEE ICIT, 2016, pp. 1302-1307.
[26] H. Huang, “Design an LLC resonant half-bridge power converter,” Texas Instruments Power Supply Design Seminar SEM1900, topic 3, TI literature no. SLUP263, 2010.
[27] Y. C. Chen, “Design and implementation of LLC resonant converter,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, Jun. 2009.
[28] J. Hou, “Design procedure for LLC resonant converter,” M.S. thesis, Dept. Elect. Eng., National Taiwan Univ., Taipei, Taiwan, Jun. 2009.
[29] Texas Instruments, “TMS320F28335 Digital Signal Controllers (DSCs) Data Manual,” Sep. 2008.