| 研究生: |
金語智 Kwanairara, Jockim |
|---|---|
| 論文名稱: |
運用參與式地理資訊系統(PGIS)與模糊層級分析法(FAHP)評估颱風引發之洪水風險:以臺南市西寮里為例 Assessing Typhoon-Induced Flood Risks Using a Participatory Geographic Information System (PGIS) and the Fuzzy Analytic Hierarchy Process (FAHP): A Case Study of Xiliao Village, Tainan City, Taiwan |
| 指導教授: |
哈里森約翰
Harrison, John |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 颱風引發洪水 、災害與暴露度 、PGIS 、FAHP 、社區洪水風險 |
| 外文關鍵詞: | Typhoon-induced flood, hazard and exposure, PGIS, FAHP, community flood risks |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱帶氣旋引發的洪水是全球最具破壞性的自然災害之一,對沿海社區構成威脅。台灣位於西太平洋颱風帶內,由於颱風頻繁、鄰近台灣海峽、沿海地形平坦及人口密度高,特別容易受到影響。本研究採用參與式地理資訊系統(PGIS)和模糊層級分析法(FAHP)評估颱風引發的洪水風險,聚焦於台灣台南市七股區西寮里的災害與暴露度分析。前期研究透過半結構式訪談25位利害關係人,識別出颱風造成的主要災害及七股區受影響最嚴重的村落。PGIS邀請12位當地參與者劃定因豪雨和風暴潮造成的淹水區域,而FAHP整合四位專家的專業知識,透過成對比較矩陣決定影響因子。研究結果顯示嚴重的洪水風險,降雨淹水影響72.33%的村落面積,其中62.72%被歸類為高至極高危害區。風暴潮影響17.07%的面積,16.63%被歸類為高至極高危害,主要影響西部沿海地區。FAHP分析顯示豪雨(39.6%)和風暴潮(28.5%)是主要災害因子,高程(14.2%)、坡度(10.2%)、地層下陷和海平面上升分別貢獻4.1%和3%。養殖區是暴露度最高的要素,占研究區域76.7%,具有最高的FAHP權重(48.3%),其次為建築物(31.9%)、關鍵基礎設施(12.6%)和裸露地(7.3%)。整合評估發現豪雨和風暴潮威脅養殖設施,並對鄰近住宅區造成連鎖風險,因為維持約75%蓄水量的養殖池在颱風期間容易潰堤。風險分級透過四位社區成員的參與式評估及Sentinel-2 NDWI進行驗證,與本研究的風險評估達成高度一致。研究結果顯示參與式方法能有效識別社區洪水風險,並提供可複製的架構供脆弱沿海社區進行洪水風險評估。
Tropical cyclone-induced floods are among the most devastating natural disasters globally, threatening coastal communities. Taiwan, located within the western Pacific typhoon belt, is particularly vulnerable due to frequent typhoons, proximity to the Taiwan Strait, flat coastal topography, and high population density. This study employed the Participatory Geographic Information System (PGIS) and Fuzzy Analytic Hierarchy Process (FAHP) to assess typhoon-induced flood risk, focusing on hazard and exposure components, in Xiliao Village, Tainan City, Taiwan. A preliminary study involving 25 stakeholders through semi-structured interviews identified major typhoon-generated disasters and the most impacted village in Qigu District. PGIS engaged 12 local participants in delineating flood-prone areas from torrential rainfall and storm surge, while FAHP integrated expertise from four specialists to determine influential factors through pairwise comparison matrices. Results revealed severe flood risk, with rainfall flooding affecting 72.33% of the village area and 62.72% classified as high to very high hazard zones. Storm surge affected 17.07% of the area, with 16.63% categorized as high to very high hazard, predominantly affecting western coastal regions. FAHP analysis identified torrential rainfall (39.6%) and storm surge (28.5%) as dominant hazard factors, elevation (14.6%), slope (10.2%), land subsidence and sea-level rise contributed 4.1% and 3%, respectively. Aquaculture zones were the most exposed element, occupying 76.7% of the study area with the highest FAHP weight (48.3%), followed by buildings (31.9%), critical infrastructure (12.6%), and exposed land (7.3%). The integrated assessment identified that torrential rainfall and storm surge threaten aquaculture facilities and create cascading risks to nearby residential areas, as aquaculture ponds maintained about 75% capacity are easily overwhelmed during typhoon events. Risk classification was validated through participatory assessment involving four community members and Sentinel-2 NDWI, achieving strong agreement with this study's risk assessment. The findings demonstrate that participatory approaches can effectively identify community flood risks and offer a replicable framework for flood risk assessment in vulnerable coastal communities.
Aggarwal, Anu & Aakash, Aakash. (2017). An Innovative B2C E-commerce Websites Selection using the ME-OWA and Fuzzy AHP.
Almar, R., Bergsma, E. W. J., Melet, A., Diaz, H., Almeida, L. P., Dada, O., Kestenare, E., Athanasiou, P., Papa, F., Ranasinghe, R., & Vousdoukas, M. (2021). A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24008-9
Balaguru, K., Judi, D. R., & Leung, L. R. (2016). Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity. Climatic Change, 138(1–2), 99–110. https://doi.org/10.1007/s10584-016-1728-8
Ballı, S., & Korukoğlu, S. (2009). Operating system selection using Fuzzy AHP and TOPSIS methods. Mathematical and Computational Applications, 14(2), 119–130. https://doi.org/10.3390/mca14020119
Belton, B., & Thilsted, S. H. (2013). Fisheries in transition: Food and nutrition security implications for the global South. Global Food Security, 3(1), 59–66. https://doi.org/10.1016/j.gfs.2013.10.001
Becker, J. S., Taylor, H. L., Doody, B. J., Wright, K. C., Gruntfest, E., & Webber, D. (2015). A Review of People’s Behavior in and around Floodwater. Weather Climate and Society, 7(4), 321–332. https://doi.org/10.1175/wcas-d-14-00030.1
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., & Widmann, M. (2019). Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Science Advances, 5(9). https://doi.org/10.1126/sciadv.aaw5531
Brandt, K., Graham, L., Hawthorne, T., Jeanty, J., Burkholder, B., Munisteri, C., & Visaggi, C. (2019). Integrating sketch mapping and hot spot analysis to enhance capacity for community‐level flood and disaster risk management. Geographical Journal, 186(2), 198–212. https://doi.org/10.1111/geoj.12330
Brown, G., & Fagerholm, N. (2014). Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecosystem Services, 13, 119–133. https://doi.org/10.1016/j.ecoser.2014.10.007
Buckley, J., Feuring, T., & Hayashi, Y. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. https://doi.org/10.1016/0165-0114(85)90090-9
Bullen, J., & Miles, A. (2024). Exploring local perspectives on flood risk: A participatory GIS approach for bridging the gap between modelled and perceived flood risk zones. Applied Geography, 163, 103176. https://doi.org/10.1016/j.apgeog.2023.103176
Central Weather Administration. (2025). FAQ for typhoon – How many typhoon landfalls have been on Taiwan? (#16). In “Typhoon” (Typhoon list 02). https://www.cwa.gov.tw/V8/E/K/Encyclopedia/typhoon/typhoon_list02.html#typhoon-16
CWA. (2020). Main Points of Hazardous Weather Operation of Central Weather Administration (Excerpt). https://www.cwa.gov.tw/Data/prevent/Defining_hazardous_weather_E.pdf
Chang, D. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2
Chang, M., Huang, R., Liao, C., Upomo, T. C., & Kusumawardani, R. (2021). Numerical assessment on the influence of various factors for subsidence at the intersection of EXPWy 78 and High Speed Rail of Taiwan. In Sustainable civil infrastructures (pp. 18–36). https://doi.org/10.1007/978-3-030-80142-7_2
Chen, Y., Lin, H., Liou, J., Cheng, C., & Chen, Y. (2022). Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios in Taiwan. Water, 14(2), 207. https://doi.org/10.3390/w14020207
Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data. https://doi.org/10.1201/9780429052729
Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606. https://doi.org/10.1016/j.gloenvcha.2008.07.013
Dandapat, K., & Panda, G. K. (2017). Flood vulnerability analysis and risk assessment using analytical hierarchy process. Modeling Earth Systems and Environment, 3(4), 1627–1646. https://doi.org/10.1007/s40808-017-0388-7
Diez-Sierra, J., Iturbide, M., Fernández, J. et al. Consistency of the regional response to global warming levels from CMIP5 and CORDEX projections. Clim Dyn 61, 4047–4060 (2023). https://doi.org/10.1007/s00382-023-06790-y
European Commission, Joint Research Centre. (2017). INFORM: Index for risk management—Concept and methodology (Version 2017). Publications Office of the European Union. https://drmkc.jrc.ec.europa.eu/inform-index/InDepth/Methodology
Esri. (n.d.). Elevation. In GIS dictionary. Retrieved January 10, 2026, from https://support.esri.com/en-us/gis-dictionary/elevation
FAO (Food and Agriculture Organization). (2006). Guidelines for Soil Description (4th ed.). Rome: Food and Agriculture Organization of the United Nations.
Frank, W. M., & Young, G. S. (2007). The interannual variability of tropical cyclones. Monthly Weather Review, 135(10), 3587–3598. https://doi.org/10.1175/mwr3435.1
Fraser, S., Leonard, G. S., Murakami, H., Matsuo, I., & Zealand, G. S. N. (2012). Tsunami Vertical Evacuation Buildings - Lessons for International Preparedness Following the 2011 Great East Japan Tsunami. Journal of Disaster Research, 7(sp), 446–457. https://doi.org/10.20965/jdr.2012.p0446
Fuchs, S., Kuhlicke, C., & Meyer, V. (2011). Editorial for the special issue: vulnerability to natural hazards—the challenge of integration. Natural Hazards, 58(2), 609–619. https://doi.org/10.1007/s11069-011-9825-5
Galloway, D. L., & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486. https://doi.org/10.1007/s10040-011-0775-5
Grigg, N. S. (2023). Comprehensive Flood Risk Assessment: state of the practice. Hydrology, 10(2), 46. https://doi.org/10.3390/hydrology10020046
Hadlos, A., Opdyke, A., & Hadigheh, S. A. (2022). Where does local and indigenous knowledge in disaster risk reduction go from here? A systematic literature review. International Journal of Disaster Risk Reduction, 79, 103160. https://doi.org/10.1016/j.ijdrr.2022.103160
Hsiao, Y., Chen, C., Chao, Y., Li, H., Ho, C., Hsu, C., & Yeh, K. (2022). Development and application of flood impact maps under climate change scenarios: A case study of the Yilan area of Taiwan. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.971609
Hung, W., Hwang, C., Chen, Y., Zhang, L., Chen, K., Wei, S., Huang, D., & Lin, S. (2017). Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise. Remote Sensing, 10(1), 40. https://doi.org/10.3390/rs10010040
Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C. K., Galloway, D. L., Sneed, M., Hung, W., Cheng, Y., & Li, F. (2016). Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Scientific Reports, 6(1). https://doi.org/10.1038/srep28160
Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J., Winsemius, H. C., Verlaan, M., & Kanae, S. (2017). Compound simulation of fluvial floods and storm surges in a global coupled river‐coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh. Journal of Advances in Modeling Earth Systems, 9(4), 1847–1862. https://doi.org/10.1002/2017ms000943
IPCC [Intergovernmental Panel on Climate Change]. (2021) – The Physical Science Basis. Cambridge University Press.
Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and flooding. In The World Bank eBooks. https://doi.org/10.1596/978-0-8213-8866-2
John, B. (2025). Community feedback loops in GIS‑based broadband planning. https://www.researchgate.net/publication/392733004_Community_Feedback_Loops_in_GIS-Based_Broadband_Planning
Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed Methods research: a research paradigm whose time has come. Educational Researcher, 33(7), 14–26. https://doi.org/10.3102/0013189x033007014
Kahraman, C., Öztayşi, B., Sarı, İ. U., & Turanoğlu, E. (2014). Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowledge-Based Systems, 59, 48–57. https://doi.org/10.1016/j.knosys.2014.02.001
Kelman, Ilan & Mercer, Jessica & West, Jennifer. (2009). Combining Different Knowledges: Community-Based Climate Change Adaptation in Small Island Developing States. Participatory Learning and Action. 60. 41-53.
Leonard, M., Lambert, M., Phatak, A., Mcinnes, K., Risbey, J., Jakob, D., Schuster, S., Westra, S., Stafford‐Smith, M., & Van Den Hurk, B. (2013). A compound event framework for understanding extreme impacts. WIREs Climate Change, 5(1), 113–128. https://doi.org/10.1002/wcc.252
Ma, R., Wu, L., Liu, S., & Xu, Z. (2018). CROSS VALIDATION ON THE EQUALITY OF UAV-BASED AND CONTOUR-BASED DEMS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–3, 1245–1248. https://doi.org/10.5194/isprs-archives-xlii-3-1245-2018
Mardani, A., Jusoh, A., Nor, K. M., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571. https://doi.org/10.1080/1331677x.2015.1075139
Maxwell, J. A. (Ed.). (2005) Qualitative research design: An interactive approach (2nd ed.).
McCALL, M. K., & Minang, P. A. (2005). Assessing participatory GIS for community‐based natural resource management: claiming community forests in Cameroon. Geographical Journal, 171(4), 340–356. https://doi.org/10.1111/j.1475-4959.2005.00173.x
Musungu, K. (2015). ASSESSING SPATIAL DATA QUALITY OF PARTICIPATORY GIS STUDIES: A CASE STUDY IN CAPE TOWN. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-2/W2, 75–82. https://doi.org/10.5194/isprsannals-ii-2-w2-75-2015
Myuri, B., Obert, J., & L, M. P. (2017). Integration of indigenous and scientific knowledge in climate adaptation in KwaZulu- Natal, South Africa. Change and Adaptation in Socio-Ecological Systems, 3(1). https://doi.org/10.1515/cass-2017-0006
National Oceanic and Atmospheric Administration [NOAA]. (2024). Flood and flash flood definitions? National Hurricane Center. https://www.weather.gov/mrx/flood_and_flash
National Science and Technology Council & Ministry of Environment. (2024). Climate change in Taiwan: National scientific report 2024. National Science and Technology Council & Ministry of Environment, R.O.C. (Taiwan).
Needham, H. F., Keim, B. D., & Sathiaraj, D. (2015). A review of tropical cyclone‐generated storm surges: Global data sources, observations, and impacts. Reviews of Geophysics, 53(2), 545–591. https://doi.org/10.1002/2014rg000477
Nguyen, T. T., Bonetti, J., Rogers, K., & Woodroffe, C. D. (2016). Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean & Coastal Management, 123, 18–43. https://doi.org/10.1016/j.ocecoaman.2015.11.022
Nicholls, R. J., & Cazenave, A. (2010). Sea-Level rise and its impact on coastal zones. Science, 328(5985), 1517–1520. https://doi.org/10.1126/science.1185782
Nirwansyah, A. W., Mandili, A., Inez-Pedro, B., Aini, J., Sriyanto, S., & Sadeli, E. H. (2024b). Using Spatial Literacy for Disaster Management in Coastal Communities of Small Island Developing States (SIDS): A Case Study from Lavongai, Papua New Guinea. Sustainability, 16(21), 9152. https://doi.org/10.3390/su16219152
Nyimbili, F., & Nyimbili, L. (2024). Types of Purposive Sampling Techniques with Their Examples and Application in Qualitative Research Studies. British Journal of Multidisciplinary and Advanced Studies, 5(1), 90–99. https://doi.org/10.37745/bjmas.2022.0419
Olazabal, M., Chu, E., Broto, V. C., & Patterson, J. (2021). Subaltern forms of knowledge are required to boost local adaptation. One Earth, 4(6), 828–838. https://doi.org/10.1016/j.oneear.2021.05.006
Pakati, S. S., Shoko, C., & Dube, T. (2025). Integrated flood modelling and risk assessment in urban areas: A review on applications, strengths, limitations and future research directions. Journal of Hydrology Regional Studies, 61, 102583. https://doi.org/10.1016/j.ejrh.2025.102583
Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2013). Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration and Policy in Mental Health and Mental Health Services Research, 42(5), 533–544. https://doi.org/10.1007/s10488-013-0528-y
Pascarella, G., Rossi, M., Montella, E., Capasso, A., De Feo, G., Botti, G., Nardone, A., Montuori, P., Triassi, M., D’Auria, S., & Morabito, A. (2021). Risk analysis in healthcare organizations: Methodological framework and critical variables. Risk Management and Healthcare Policy, Volume 14, 2897–2911. https://doi.org/10.2147/rmhp.s309098
Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of flooding on road transport: A depth-disruption function. Transportation Research Part D Transport and Environment, 55, 67–81. https://doi.org/10.1016/j.trd.2017.06.020
Phuah, T. L., & Chang, Y. (2023). Socioeconomic adaptation to geomorphological change: An empirical study in Cigu Lagoon, southwestern coast of Taiwan. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1091640
Rambaldi, G., Chambers, R., and Fox, J. (2006). Practical ethics for PGIS practitioners, facilitators, technology intermediaries and researchers (PLA 54). https://www.iied.org/g02957
Reichel, C., & Frömming, U. U. (2014). Participatory Mapping of Local Disaster Risk Reduction Knowledge: An Example from Switzerland. International Journal of Disaster Risk Science, 5(1), 41–54. https://doi.org/10.1007/s13753-014-0013-6
Risk Sciences International. (2025). Participatory risk assessment. https://risksciences.com/participatory-risk-assessment/
Saaty, T.L. (1980) The Analytic Hierarchy Process. McGraw-Hill, New York.
Shi, Y., Zhai, G., Xu, L., Zhu, Q., & Deng, J. (2019). Planning Emergency Shelters for Urban Disasters: A Multi-Level Location–Allocation Modeling Approach. Sustainability, 11(16), 4285. https://doi.org/10.3390/su11164285
Shieh, C., Wang, C., Chen, Y., Tsai, Y., & Tseng, W. (2010). An Overview of Disasters Resulted from Typhoon Morakot in Taiwan. Journal of Disaster Research, 5(3), 236–244. https://doi.org/10.20965/jdr.2010.p0236
Shirzaei, M., Freymueller, J., Törnqvist, T.E. et al. Measuring, modelling and projecting coastal land subsidence. Nat Rev Earth Environ 2, 40–58 (2020). https://doi.org/10.1038/s43017-020-00115-x
Tainan City Government Qigu District Office. (2023). Tainan City Government Qigu District Office. https://cigu.tainan.gov.tw/en/
Taoukidou, N., Karpouzos, D., & Georgiou, P. (2025). Flood Hazard Assessment through AHP, Fuzzy AHP, and Frequency Ratio Methods: A Comparative analysis. Water, 17(14), 2155. https://doi.org/10.3390/w17142155
Tapsell, S. M., Penning-Rowsell, E. C., Tunstall, S. M., & Wilson, T. L. (2002). Vulnerability to flooding: health and social dimensions. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 360(1796), 1511–1525. https://doi.org/10.1098/rsta.2002.1013
Thabane, L., Ma, J., Chu, R., Cheng, J., Ismaila, A., Rios, L. P., Robson, R., Thabane, M., Giangregorio, L., & Goldsmith, C. H. (2010). A tutorial on pilot studies: the what, why and how. BMC Medical Research Methodology, 10(1). https://doi.org/10.1186/1471-2288-10-1
Tschakert, P., Van Oort, B., St Clair, A. L., & LaMadrid, A. (2013). Inequality and transformation analyses: a complementary lens for addressing vulnerability to climate change. Climate and Development, 5(4), 340–350. https://doi.org/10.1080/17565529.2013.828583
Tu, J., Chou, C., & Chu, P. (2009). The Abrupt Shift of Typhoon Activity in the Vicinity of Taiwan and Its Association with Western North Pacific–East Asian Climate Change. Journal of Climate, 22(13), 3617–3628. https://doi.org/10.1175/2009jcli2411.1
UNDRR. (2015). Sendai Framework for Disaster Risk Reduction 2015-2030. United Nations Office for Disaster Risk Reduction.
UNDRR. (2017). The Sendai Framework Terminology on Disaster Risk Reduction. "Disaster risk". Accessed 13 July 2025. https://www.undrr.org/terminology/disaster-risk
UNDP [United Nations Development Programme, Bureau for Crisis Prevention and Recovery]. (2010). Disaster risk reduction: Risk assessment [PDF]. https://www.undp.org/sites/g/files/zskgke326/files/migration/ly/2Disaster-Risk-Reduction---Risk-Assessment.pdf
Van Laarhoven, P., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1–3), 229–241. https://doi.org/10.1016/s0165-0114(83)80082-7
Van Niekerk, D., Kruger, L., Nemakonde, L. D., & Forbes-Genade, K. (2017). Community-Based Disaster Risk Management (pp. 411–429). springer. https://doi.org/10.1007/978-3-319-63254-4_20
Verplanke, J., McCall, M. K., Uberhuaga, C., Rambaldi, G., & Haklay, M. (2016). A shared perspective for PGIS and VGI. The Cartographic Journal, 53(4), 308–317. https://doi.org/10.1080/00087041.2016.1227552
Vinores, C. (2024, December 13). Understanding flooding and storm surge: Causes, impacts, and prevention strategies. Envista Forensics. https://www.envistaforensics.com/knowledge-center/insights/articles/understanding-flooding-and-storm-surge-causes-impacts-and-prevention-strategies/
Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Climate Change, 5(12), 1093–1097. https://doi.org/10.1038/nclimate2736
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., Veldkamp, T. I. E., Winsemius, H. C., & Wahl, T. (2018). Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environmental Research Letters, 13(8), 084012. https://doi.org/10.1088/1748-9326/aad400
Wang, H., Castro, D. S. C., & Chen, G. (2024). Managing residual flood risk: Lessons learned from experiences in Taiwan. Progress in Disaster Science, 23, 100337. https://doi.org/10.1016/j.pdisas.2024.100337
Wang, S., Mu, L., Qi, M., Yu, Z., Yao, Z., & Zhao, E. (2021). Quantitative risk assessment of storm surge using GIS techniques and open data: A case study of Daya Bay Zone, China. Journal of Environmental Management, 289, 112514. https://doi.org/10.1016/j.jenvman.2021.112514
Wei, W., Huang, S., Qin, H., Yu, L., & Mu, L. (2024). Storm surge risk assessment and sensitivity analysis based on multiple criteria decision-making methods: a case study of Huizhou City. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1364929
West, J. J. (2010). Combining different knowledges: Community-based climate change adaptation in small island developing states 2. [Conference presentation]. Semantic Scholar. https://www.semanticscholar.org/paper/Combining-different-knowledges-%3A-community-based-in-West/3044c68bc5618369a67aab9004fb75a11560c4b3
Wilson, J. P., & Gallant, J. C. (Eds.). (2000). Terrain analysis: Principles and applications. John Wiley & Sons.
Woodruff, J. D., Irish, J. L., & Camargo, S. J. (2013). Coastal flooding by tropical cyclones and sea-level rise. Nature, 504(7478), 44–52. https://doi.org/10.1038/nature12855
Yin, J., Winton, M., Griffies, S. M., Zhao, M., & Zanna, L. (2020). Response of Storm-Related Extreme Sea Level along the U.S. Atlantic Coast to Combined Weather and Climate Forcing. Journal of Climate, 33(9), 3745–3769. https://doi.org/10.1175/jcli-d-19-0551.1
Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., & Zhang, X. (2018). Future climate risk from compound events. Nature Climate Change, 8(6), 469–477. https://doi.org/10.1038/s41558-018-0156-3