| 研究生: |
劉凡碩 Liu, Fan-Shuo |
|---|---|
| 論文名稱: |
(Mg1-xZnx)4Ta2O9陶瓷材料之微波介電特性改善與應用 Improved and Applications of (Mg1-xZnx)4Ta2O9 Microwave Dielectric Material |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 微波介電特性 、High-Q微波介電陶瓷 |
| 外文關鍵詞: | Microwave dielectric properties, High-Q microwave dielectric ceramics |
| 相關次數: | 點閱:307 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且嘗試添加燒結促進劑降低其燒結溫度;第二部份將介紹其在被動元件之應用,並實作於不同基板上,用以探討元件尺寸的改善。
第一部份首先要介紹(Mg1-xZnx)4Ta2O9陶瓷系統之微波介電特性。由實驗中可得知(Mg1-xZnx)4Ta2O9在1460°C燒結4小時可獲得最佳之介電特性 ~ 12.6,Q׃~ 385,000,τf ~ –61.9 ppm/°C。並且,我們試著在(Mg0.95Zn0.05)4Ta2O9中添加0.5–2 wt%的燒結促進劑B2O3,來降低其燒結溫度,以期達到降低製作成本,增加微波材料的應用性。
第二部份我們設計及實作一操作在2.4 GHz的微帶線帶通濾波器,二階混和耦合髮夾式帶通濾波器為主體,利用SIR(Stepped-impedance resonators)結構產生不同的阻抗比,進而抑制二倍頻效應。最後,我們將此電路實作在FR4、氧化鋁和(Mg0.95Zn0.05)4Ta2O9–0.5 wt% B2O3基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。
There are two main subjects in this thesis. First, we will discuss the low loss dielectric material, and try to add sintering aids in order to decrease the sintering temperature. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
First, we discuss the microwave dielectric properties of (Mg1–xZnx)4Ta2O9 (x = 0.02–0.08) ceramics. In our experiment, the composition (Mg0.95Zn0.05)4Ta2O9 sintered at 1460°C for 4 hours has better microwave dielectric properties with an of 12.6, an extremely high Qf of 385,000 GHz, and a of –61.9 ppm/°C. Addition of B2O3 can lower the sintering temperatures of specimens, whereas it also degrades the Qf values. The experiment result showed that (Mg0.95Zn0.05)4Ta2O9–0.5 wt% B2O3 have the best microwave dielectric properties.( of 12.3, an extremely high Qf of 319,000 GHz, and of –59.1 ppm/°C).
Second, we design and fabricate a microstrip band-pass filter which operation at 2.4 GHz. The filter was constructed by second-order hybrid coupling hairpin-line bandpass filter. In order to control suppress the spurious response, the filter using SIR (step impedance resonator) structure have been designed. Finally, the pattern was printed on FR4, Al2O3 and (Mg0.95Zn0.05)4Ta2O9–0.5 wt% B2O3 substrates. The frequency response of measurement results, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.
[1] H. T. Ogawa, A. K. Kan, S. Ishihara, and Y. Higashida , “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss,” J. Eur. Ceram. Soc., 23 2485–2488 (2003).
[2] A. K. Kan, H. T. Ogawa, A. Yokoi, and Y. Nakamura , “Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction,” J. Eur. Ceram. Soc., 27 2977–2981 (2007).
[3] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯), 陶瓷材料概論, 曉園出版社 (1988).
[4] R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys., 10 391–398 (1939).
[5] S. B. Cohn, “Microwave bandpass filters containing high-Q dielectric resonators,” IEEE Trans. Microwave Theory Tech., 16 [4] 218–227 (1968).
[6] D. M. Pozar, “Microwave engineering,” Third Edition, John Wiley & Sons (2005).
[7] D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[8] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., 13 152–161 (1983).
[9] D. Kajfez and P. Guillon, Dielectric resonators, Artech House (1989).
[10] S. J. Penn, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc.,80 1885–1888 (1997).
[11] N. Kumada, K. Taki, and N. Kinomura, “Single crystal structure refinement of a magnesium niobium oxide: Mg4Nb2O9,” Materials research bulletin, 35 (2000).
[12] T. Manabe, I. Yamaguchi. W. Kondo, S. Mizuta, and T. Kumagai, “Topotaxy of corundum-type tetramagnesium diniobate and ditantalate layers on rock-salt-type magnesium oxide substrates,” J. Am. Ceram. Soc., 82 2061–2065 (1999).
[13] D. C. Sun1, S. Senz, and D. Hesse, “Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions,” J. Eur. Ceram. Soc., 26 3181–3190 (2006).
[14] H. T. Ogawa and A. K. Kana, “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss,” J. Eur. Ceram. Soc., 23 2485–2488 (2003).
[15] J. W. Cahn and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering of jagged particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[16] W. J. Huppmann and G. Petzow, Sintering processes, Plenum Press (1979).
[17] R. M. German, Liquid phase sintering, Plenum Press (1985).
[18] J. H. Jean and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
[19] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書 (2005).
[20] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits, McGraw-Hill (1990).
[21] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications, John Wiley & Sons (2001).
[22] G. Kompa, Practical microstrip design and applications, Artech House (2005).
[23] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社 (1998).
[24] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition, Artech House (1996).
[25] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/Microwave applications, John Wiley & Sons (2001).
[26] R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in microstrip,” IEEE Trans. Microwave Theory Tech., MTT-16 342–350 (1968).
[27] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters, impedance matching networks and coupling structures,” Artech House (1980).
[28] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[29] S. H. Cha, “Measurements of microwave conductivity and dielectric constant by the
cavity perturbation method and their errors,” IEEE. Trans. MTT, MTT-33 519(1985).
[30] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., 28 [12] 1413–1417 (1980).
[31] Q. X. Chu and F. C. Chen, “A compact dual-band bandpass filter using meandering stepped impedance resonators,” IEEE Microw. Wireless. Compon. Lett., 18 [4] 320–322 (2008).
[32] A. Hennings, E. Semouchkina, A. Baker, and G. Semouchkin, “Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric,” IEEE Trans. Microwave Theory Tech.,54 [3] 1253–1261 (2006).
[33] S. Amari, G. Tadeson, J. Cihlar, and U. Rosenberg, “New parallel λ/2-microstrip line filters with transmission zeroes at finite frequencies,” IEEE MTT-S Int. Microwave Symp. Dig., PaperIFTU-27 543–546 (2003).
[34] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[35] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[36] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[37] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of Low-Loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[38] W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, “Phase evolution and microwave dielectric properties of (1–x)ZnAl2O4–xMg2TiO4 ceramics,” J. Am. Ceram. Soc., 92 [1] 105–109 (2009).
[39] C. S. Hsu, C. L. Huang and K. H. Chiang, “Microwave dielectric properties of B2O3-doped LaAlO3 ceramics at low Sintering temperature,” J. Mater. Sci., 38 [16] 3495–3500 (2003).
[40] K.X. Song, X.M. Chen and C.W. Zheng, “Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system,” Ceram. Int., 34 917–920 (2008).
[41] C. W. Zheng, S. Y. Wu, X. M. Chen, and K. X. Song, “Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution,” J. Am. Ceram. Soc., 90 [5] 1483–1486 (2007).