| 研究生: |
詹鎮毓 Chan, Chen-Yu |
|---|---|
| 論文名稱: |
基於順應性足部與儲能裝置達成行走、轉向與跳躍之四足機器人系統 Towards a Walking, Turning, and Jumping Quadruped Robot with Compliant and Energy Storing Mechanisms |
| 指導教授: |
劉彥辰
Liu, Yen-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 四足機器人 、順應性機構 、儲能與釋放能量機構 、跳躍 、轉向 |
| 外文關鍵詞: | Quadruped, Compliant Mechanism, Energy Storing Mechanism, Jumping, Walking, Turning |
| 相關次數: | 點閱:112 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計一四足機器人,使用順應性足部、纜繩驅動、儲能與釋放能量等機構來達成行走、轉向及跳躍之功能。順應性足部機構由兩根連桿組成,每一個自由度分別由一顆直流馬達驅動。肩關節的部份直接連接馬達,膝關節則安裝有彈簧提供順應性。為了保留足部的順應性,膝關節由纜繩驅動機構控制。纜繩驅動機構在馬達上安裝一絞盤,纏繞連接於腳尖之纜繩,當纜繩收縮時,腳即縮短;纜繩放鬆時,由於膝關節彈簧之彈力作用,使腳得以伸展。為了提供跳躍之能量,機器人機身中安裝有兩具儲能彈簧,使用纜繩連接至後腳大腿;同時亦有一直流馬達帶動蝸桿蝸輪機構,蝸輪上配備一絞盤,用以纏繞連接於儲能彈簧之纜繩,拉伸儲能彈簧。此外為了避免儲能彈簧在拉伸時影響後腳肩關節馬達,在每個後腳的肩關節皆裝有棘輪與棘爪,在儲能彈簧拉伸時能固定後腳肩關節,使儲能彈簧不會影響到馬達。
本研究為了探討機器人的運動,使用Euler-Lagrange法推導機器人動態模型,配合Simulink模擬機器人之動作。模擬中,機器人展現了行走與跳躍的能力,且模擬結果顯示儲能彈簧能夠影響機器人跳躍的高度與距離。其中行走速度可以由改變步長來進行調整,跳躍的高度與距離則隨著儲能彈簧拉伸的長度增長而增加。在轉向的部份使用商業軟體Webots進行模擬,模擬結果顯示機器人轉向能夠被提出之控制法控制。實驗中,採用機器人作業系統(Robot Operating System)來作為傳遞資料的界面。為了減少機器人端控制板的運算負擔,由電腦端來計算各腳所需要之步長,並得出期望之腳尖軌跡與位置,再由逆向運動學得到各馬達所期望之角度後,傳送至機器人端控制板,由控制板上撰寫之PID控制器控制馬達。轉向實驗顯示,機器人藉由回授機身角度調整步長的方式能夠有效的控制機身的轉向。且轉向的速度也能由最大調整之步長來改變,同時機身角度誤差能夠被控制在一定的範圍。本研究另有進行機器人跳躍實驗,雖然結果不如預期,但我們仍就實驗結果統整出了可以改進之方向。
In this thesis, we introduced a quadruped robot which has compliant legs, energy storing and releasing mechanisms. To preserve the compliance of legs, the quadruped is equipped with cable-driven mechanism which are used to control the compliant legs. The energy storing and releasing mechanisms contained the energy storing springs, worm and worm wheel, rachet and pawls. To determine the dynamics of the robot, we derived dynamic equation by using Euler-Lagrange method. The effect of compliant components were calculated by equivalent torque. The dynamic model was used to simulate the walking and jumping motion of the robot in Simulink. In simulation, the jumping height and distance can be changed by varying maximum tension length of the energy storing springs. The body orientation can be controlled by the turning method that we proposed. The turning method was based on varying the step length of each leg. In simulations and experiments, the results showed that the turning method can lead the robot to desired direction.
[1] M. Raibert. BigDog, the Rough-Terrain Quadruped Robot. In Myung J.
Chung, editor, Proceedings of the 17th IFAC World Congress, 2008, volume
17.
[2] A. Sprowitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and A. J.
Ijspeert. Towards dynamic trot gait locomotion: Design, control and experiments
with cheetah-cub, a compliant quadruped robot. International Journal
of Robotics Research, 32(8):932{950, 2013.
[3] H.-W. Park, S. Park, and S. Kim. Variable-speed quadrupedal bounding
using impulse planning: Untethered high-speed 3d running of mit cheetah 2.
In Robotics and Automation (ICRA), 2015 IEEE International Conference
on, pages 5163{5170, May 2015.
[4] D.P. Krasny and D.E. Orin. Generating high-speed dynamic running gaits
in a quadruped robot using an evolutionary search. Systems, Man, and Cy-
bernetics, Part B: Cybernetics, IEEE Transactions on, 34(4):1685{1696, Aug
2004.
[5] R. Sato, I. Miyamoto, K. Sato, A. Ming, and M. Shimojo. Development of
robot legs inspired by bi-articular muscle-tendon complex of cats. In Intelli-
gent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on, pages 1552{1557, Sept 2015.
[6] L. Righetti and A.J. Ijspeert. Pattern generators with sensory feedback for
the control of quadruped locomotion. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, pages 819{824, May 2008.
[7] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim. Design principles
for highly e cient quadrupeds and implementation on the mit cheetah
robot. In Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on, pages 3307{3312, May 2013.
72
[8] S. Bergbreiter. E ective and e cient locomotion for millimeter-sized microrobots.
In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 4030{4035, Sept 2008.
[9] D. Wei, W. Ge, and Y. Liu. The concept of a jumping rescue robot with
variable transmission mechanism. In Safety, Security, and Rescue Robotics
(SSRR), 2011 IEEE International Symposium on, pages 99{104, Nov 2011.
[10] J. Zhao, J. Xu, B. Gao, N. Xi, F.J. Cintron, M.W. Mutka, and X. Li.
Msu jumper: A single-motor-actuated miniature steerable jumping robot.
Robotics, IEEE Transactions on, 29(3):602{614, June 2013.
[11] K. Graichen, S. Hentzelt, A. Hildebrandt, N. Karcher, N. Gai ert, and
E. Knubben. Control design for a bionic kangaroo. Control Engineering
Practice, 42:106 { 117, 2015.
[12] H.-W. Park, P. Wensing, and S. Kim. Online planning for autonomous
running jumps over obstacles in high-speed quadrupeds. In Proceedings of
Robotics: Science and Systems, Rome, Italy, July 2015.
[13] D.W. Marhefka and D.E. Orin. A compliant contact model with nonlinear
damping for simulation of robotic systems. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 29(6):566{572, Nov
1999.
[14] Willow Garage. Robot Operating System. http://www.ros.org, 2007. [Online;
accessed 22-July-2016].
[15] L. Mar n, M. Vall es, A Soriano, A Valera, and P. Albertos. Event-based localization
in ackermann steering limited resource mobile robots. IEEE/ASME
Transactions on Mechatronics, 19(4):1171{1182, Aug 2014.
[16] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zu erey, D. Floreano, and A. Martinoli. The e-puck, a Robot Designed
for Education in Engineering. In Paulo J.S. Gon calves, Paulo J.D. Torres,
and Carlos M.O. Alves, editors, Proceedings of the 9th Conference on Au-
tonomous Robot Systems and Competitions, volume 1, pages 59{65, Portugal,
2009.
[17] M. A. Sharba , C. Lucas, and R. Daneshvar. Motion control of omnidirectional
three-wheel robots by brain-emotional-learning-based intelligent
controller. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 40(6):630{638, Nov 2010.
73
[18] C. Rohrig, D. He , C. Kirsch, and F. Kunemund. Localization of an omnidirectional
transport robot using ieee 802.15.4a ranging and laser range
nder. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 3798{3803, Oct 2010.
[19] A. Ananthanarayanan, M. Azadi, and S. Kim. Towards a bio-inspired leg
design for high-speed running. Bioinspiration and Biomimetics, 7(4):046005,
2012.
[20] C. Liu, Q. Chen, and D. Wang. Cpg-inspired workspace trajectory generation
and adaptive locomotion control for quadruped robots. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 41(3):867{880, June
2011.
[21] M. Li, Z. Jiang, P. Wang, L. Sun, and S. S. Ge. Control of a quadruped
robot with bionic springy legs in trotting gait. Journal of Bionic Engineering,
11(2):188 { 198, 2014.
[22] D. J. Hyun, S. Seok, J. Lee, and S. Kim. High speed trot-running: Implementation
of a hierarchical controller using proprioceptive impedance control
on the mit cheetah. The International Journal of Robotics Research, 2014.
[23] G. P. Jung, C. S. Casarez, S. P. Jung, R. S. Fearing, and K. J. Cho. An
integrated jumping-crawling robot using height-adjustable jumping module.
In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 4680{4685, May 2016.
[24] Q.-V. Nguyen and H. C. Park. Design and demonstration of a locust-like
jumping mechanism for small-scale robots. Journal of Bionic Engineering,
9(3):271 { 281, 2012.
[25] J. Zhang, G. Song, G. Qiao, Z. Li, W. Wang, and A. Song. A novel one-motor
driven robot that jumps and walks. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 13{19, May 2013.
[26] M. Hutter, C. Gehring, M. Bloesch, M. Hoep
inger, and R. Siegwart. Walking
and Running with StarlETH. In The 6th International Symposium on
Adaptive Motion of Animals and Machines (AMAM), 2013.
[27] I. Poulakakis, J. A. Smith, and M. Buehler. Modeling and experiments of
untethered quadrupedal running with a bounding gait: The scout ii robot.
The International Journal of Robotics Research, 24(4):239{256, 2005.
74
[28] J. Estremera and K. J. Waldron. Thrust control, stabilization and energetics
of a quadruped running robot. The International Journal of Robotics
Research, 27(10):1135{1151, October. 2008.
[29] A. De and D. E. Koditschek. The penn jerboa: A platform for exploring
parallel composition of templates. CoRR, abs/1502.05347, 2015.
[30] Z.-G. Zhang and H. Kimura. Rush: A simple and autonomous quadruped
running robot. Proceedings of the Institution of Mechanical Engineers, Part
I: Journal of Systems and Control Engineering, 223(3):323{336, 2009.
[31] C.-Y. Chan and Y.-C. Liu. Design and simulation of a quadruped walking
and jumping robot. International Conference on Advanced Robotics and In-
telligent Systems, May 2015.
[32] M. Hutter, C. Gehring, M.A. Hop
inger, M. Blosch, and R. Siegwart. Toward
combining speed, e ciency, versatility, and robustness in an autonomous
quadruped. Robotics, IEEE Transactions on, 30(6):1427{1440, Dec 2014.
[33] K. Hosoda, Y. Sakaguchi, and H. Takayama. Pneumatic-driven jumping robot
with anthropomorphic muscular skeleton structure. Autonomous Robots,
28:307{316, April. 2010.
[34] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Con-
trol. New York: John Wiley & Sons, Inc., 2006.
[35] C.-Y. Chan and Y.-C. Liu. Towards a walking, turning, and jumping
quadruped robot with compliant mechanisms. IEEE International Confer-
ence on Advanced Intelligent Mechatronics, (in press).