簡易檢索 / 詳目顯示

研究生: 李佳峰
Li, Chia-Feng
論文名稱: 無線頻率感測接收機前端電路整合設計
Wireless Frequency Sensing Receiver Front-end Integration Design
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 179
中文關鍵詞: 接收機低雜訊放大器主動式相位分割器混頻器鎖相迴路
外文關鍵詞: Receiver, Low Noise Amplifier, Active Phase Splitter, Mixer, Phase-locked Loop
相關次數: 點閱:86下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為無線頻率感測接收機前端電路的整合設計與製作,所製作的接收機電路包含操作於2.4 GHz與1 GHz兩頻帶版本。其無線頻率感測接收機電路晶片可運用於相關的感測系統中,如眼壓監控系統(IOP)。晶片製作為使用國家晶片中心(CIC)提供之TSMC 180 nm 1P6M RFCMOS製程。
    接收機電路分為兩個區塊:射頻前端接收電路及鎖相迴路。論文中將會介紹兩個區塊中子電路的設計考量及模擬結果,並展示其量測結果。為了完整無線感測接收機電路的量測,此論文也包含了2.4 GHz的PCB天線與阻抗匹配傳輸線的設計及整合量測。
    前端接收電路分大致上分為四級;低雜訊放大器(Low Noise Amplifier)、主動式相位切割器(Phase Splitter)、雙平衡混頻器(Double-balanced Mixer)及中頻放大器。在2.4 GHz前端接收電路中,第一級低雜訊放大器需擁有較低的雜訊指數來增加其接收靈敏度;第二級的電流再利用疊接式相位切割器擁有高增益及精確的差動相位輸出;第三級的源極注入混頻器能有效的抑制LO訊號擺幅大小對線性度的影響;第四級的輸出緩衝級設計主要為驅動輸出端負載為考量。2.4 GHz前端接收電路於1.8 V操作電壓下能接收感測訊號功率為-60 dBm的射頻頻率變化。前端電路不包含緩衝器之總功率耗損為7.38 mW。在1 GHz前端接收電路於1.3 V操作電壓下能感測功率為-55 dBm射頻訊號,其功率耗損不包含緩衝器後為8.68 mW。鎖相迴路設計包含相位頻率偵測器(PFD)、電荷幫浦、迴路濾波器、除頻器及壓控振盪器。於900 MHz鎖相迴路中,電感電容共振腔壓控振盪器(LC-tank VCO)擁有較好的相位雜訊,搭配運算放大器回授之電荷幫浦能夠補償使得製程變異下皆有良好的電流匹。搭配低功耗TSPC除頻器,在960 MHz的輸出頻率下相位雜訊於1 MHz偏移頻率為-125.9 dBc/Hz,不包含緩衝器後功率消耗為4.7 mW。

    This thesis presents the integration design and chip implementation of two wireless frequency sensing receiver front-end circuits which can operate at 2.4 GHz and 1 GHz, respectively. These receiver front-end circuits can be used for the wireless sensor in intraocular pressure(IOP) systems. Both of the chips are fabricated by CIC in TSMC’s 180 nm 1P6M RF CMOS process.
    There are two main function blocks in our designs: RF front-end and phase-locked loop (PLL). In this thesis, we will report the design considerations and simulation results of the sub-circuits in these blocks. The measurement results of the receiver front-end integration will be also shown. Especially, for the completeness sake, the designs of 2.4 GHz on-PCB half-wave dipole antennas with impedance-matching transmission lines are included.
    From the measurement results, it is found that the 2.4GHz receiver front-end can detect the RF frequency change with an input signal power level of -60 dBm. Also the 1 GHz receiver front-end circuit operated at 1.3 V supply voltage can detect an input signal level of -55 dBm, and the phase noise of the designed PLL is -125.9 dBc/Hz at 1 MHz offset from the carrier frequency of 960 MHz.

    中文摘要 -------------------------------------------------I 英文延伸摘要----------------------------------------------III 誌謝-----------------------------------------------------VI 目錄----------------------------------------------------VII 表目錄----------------------------------------------------X 圖目錄---------------------------------------------------XI 第一章 緒論------------------------------------------------1 1-1 研究動機-----------------------------------------------1 1-2 論文架構概述 -----------------------------------------2 1-2-1 本應用之接收機架構介紹---------------------------------2 1-2-2 頻率感測接收機之規格預算--------------------------------6 第二章 接收機前端電路----------------------------------------9 2-1 低雜訊放大器(Low Noise Amplifier)-----------------------9 2-1-1 低雜訊放大器設計考量------------------------------------9 2-1-2 低雜訊放大器之基本架構---------------------------------20 2-1-3 電感式源極退化CG-CS疊接式低雜訊放大器設計流程-------------22 2-2 相位分割器(Phase Splitter)-----------------------------27 2-2-1 主被動式相位分割器選擇---------------------------------27 2-2-2 主動式相位分割器規格介紹--------------------------------27 2-2-3 主動式相位分割器電路架構--------------------------------28 2-2-4 低雜訊放大器與主動式相位分割器模擬結果--------------------35 2-3 混頻器(Mixer) ------------------------------------------41 2-3-1 混頻器介紹 ------------------------------------------41 2-3-2 混頻器操作原理及設計-----------------------------------44 2-3-3 混頻器隔離度 ------------------------------------------49 2-3-4 混頻器雜訊分析----------------------------------------49 2-3-5 混頻器線性度 ------------------------------------------53 2-3-6 本應用之混頻器介紹 ----------------------------------55 2-3-7 混頻器之電路模擬 ----------------------------------58 2-3-8 混頻器之緩衝器介紹 ----------------------------------60 第三章 鎖相迴路 ------------------------------------------61 3-1 鎖相迴路設計(Phase-locked Loop Design) ------------------61 3-1-1 鎖相迴路設計緒論 ----------------------------------62 3-1-2 鎖相迴路線性模型 ----------------------------------62 3-1-3 鎖相迴路特性參數 ----------------------------------65 3-2 壓控振盪器(Voltage Controlled Oscillator)--------------67 3-2-1 電感電容共振腔壓控振盪器(LC tank VCO)介紹---------------67 3-2-2 本鎖相迴路中之電感電容共振腔壓控振盪器介紹-----------------73 3-2-3 環形壓控振盪器(Ring VCO)介紹 -------------------------74 3-2-4 電感電容共振腔壓控振盪器與環形壓控振盪器比較---------------81 3-2-5 壓控振盪器佈局----------------------------------------82 3-2-6 壓控振盪器之電路模擬-----------------------------------84 3-3 相位頻率偵測器(Phase Frequency Detector)----------------87 3-3-1 相位頻率偵測器介紹-------------------------------------87 3-3-2 相位偵測器電路架構-------------------------------------88 3-4 電荷幫浦(Charge Pump) ----------------------------------90 3-4-1 電荷幫浦電路架構--------------------------------------90 3-4-2 電荷幫浦非理想效應-------------------------------------92 3-4-3 電荷幫浦之雜訊貢獻-------------------------------------97 3-4-4 本系統應用之電荷幫浦設計介紹----------------------------98 3-4-5 相位頻率偵測器與電荷幫浦之電路模擬----------------------102 3-5 除頻器(Frequency Divider)-----------------------------108 3-5-1 本應用之除頻器介紹與電路設計---------------------------108 3-5-2 除頻器之電路模擬-------------------------------------112 3-6 迴路濾波器(Loop Filter) ------------------------------114 3-6-1 迴路穩定條件 -----------------------------------------114 3-6-2 迴路頻寬設計 -----------------------------------------116 3-6-3 鎖相迴路頻寬選擇與雜訊分析-----------------------------119 3-6-4 鎖相迴路之電路模擬 ---------------------------------126 第四章 晶片量測結果 -----------------------------------------127 4-1 2.4 GHz接收機晶片量測----------------------------------127 4-2 1 GHz接收機晶片量測 --------------------------------139 4-3 800 MHz環形壓控振盪器量測-------------------------------147 4-4 運用於2.4 GHz傳輸線設計與量測---------------------------149 4-4-1 傳輸線設計 -----------------------------------------149 4-4-2 傳輸線模擬與量測-------------------------------------151 4-5 本接收機之天線設計--------------------------------------153 4-5-1 天線設計流程 ----------------------------------------153 4-5-2 應用於2.4 GHz天線模擬--------------------------------156 4-5-3 應用於2.4 GHz天線量測--------------------------------156 4-5-4 天線對傳 ----------------------------------------159 4-5-5 結合天線與晶片量測實驗-------------------------------161 4-6 參考文獻比較 ----------------------------------------162 第五章 結論與未來展望---------------------------------------163 5-1 結論-----------------------------------------------163 5-2 未來展望--------------------------------------------164 參考文獻 ------------------------------------------------165 附錄-------------------------------------------------- 170 A. 應用於1.2 V鎖相迴路之相位頻率偵測器與電荷幫浦設計--------- 170 B. 主動式差動相位分割混頻器------------------------------- 178

    H.-W. Cheng, T.-C. Chi, H.-Y. Huang, S.-H. Ting, and T.-H. Huang, J.-C. Chiou, C.-H. Luo, “Design of Miniaturized Antenna and Power Harvester Circuit on The Enucleated Porcine Eyes ,” IEEE Antennas and Wireless Propagation Letters , vol.13, p.p. 1156-1159, June. 2014.
    B. Razavi, RF Microelectronics, 2nd edition, Prentice Hall, 2012.
    D. Banerjee, PLL performance, Simulation and Design Handbook, 4th edition.
    M. N. O. Sadiku, Elements of Electromagnetics, 5th edition, Oxford University Press, 2011.
    T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, 1998.
    R. C. H. Li, RF Circuit Design, Wiley, 2009.
    T. Y. Choi, and B. Jung, “A 2.4-GHz Resistive Feedback LNA in 0.13-um CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3019-3029, Nov. 2009.
    R. F. Martegani, An ALL-Inversion-Region "g" _"m" /I_"D" Based Design Methodology for Radiofrequency Blocks in CMOS Nanometer Technologies, The University of Seville, October. 2011.Available: http://iie.fing.edu.uy/investigacion/grupos/microele/papers
    /tesis_rf_phd.pdf
    M. A. Do, W.M. Lim, J. G. Ma, and K. S. Yeo, “Design of A Phase Splitter for 3rd ISM bands, ” IEEE Electron Devices and Solid-State Circuits, 2003 IEEE Conference on , Dec.2003, p.p. 234-240.
    H. Ma and S. J. Fang, H. Nakamura, “Novel Active Differential Phase Splitters In RFIC For Wireless Applications,” IEEE Radio Frequency Integrated Circuits Symposium, Jun. 1998, p.p. 51-54.
    D. Mastanuono and D. Manstretta, “A Low-Noise Active Balun with IM2 Cancellation for Multiband Protable DVB-H Receivers, ” in IEEE Solid-State Circuits Conference, ISSCC 2009. Dig. of Technical Papers, San Francisco, CA, Feb. 2009, pp. 216 – 217.
    B.-J. Huang, B.-J. Huang, K.-Y. Lin, and H. Wang, “A 2-40GHz Active Balun using 0.13um CMOS Process, ” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, pp. 164-466, Mar. 2009.
    H.-H. Chiang, F.-C. Huang, and C.-K. Wang, “A 90nm CMOS V-Band Low-Noise Active Balun with Broadband Phase-Correction Technique,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2583-2591, Nov. 2011.
    T.-T. Hsu and C.-N. Kuo, “Low Power 8-GHz Ultra-Wideband Active Balun,” IEEE Silicon Monolithic Integrated Circuits in RF Systems, 2006. Dig. of Papers,Topical Meeting on, San Diego, CA, Jan. 2006.
    Prof. K.-W. Cheng, Lecture Notes, Dept. of EE, NCKU.
    H. Darabi and J. Chiu ,“A Noise Cancellation Technique in Active RF-CMOS Mixers,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628-2632, Dec. 2005.
    J. Yoon, H. Kim, C. Park, J. Yang, H. Song, and S. Lee, K. Bumman, “A New RF CMOS Gilbert Mixer with Improved Noise Figure and Linearity,” IEEE Trans. Microw. Theory Tech, vol. 56,no. 3, p.p. 626-631, March. 2008.
    H. Darabi and A. A. Abidi, “Noise In RF-CMOS Mixers: A Simple Physical Model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 13-25, Jan. 2000.
    W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, “A 453-uW 53-70GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,” IEEE Trans. Microw. Theory Tech, vol. 61,no. 5, p.p. 1903-1912, May. 2013.
    T.-P. Wang, C.-C. Chang, R.-C. Liu, M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and H.-W. Huei, “A Low-Power Oscillator Mixer in 0.18-um CMOS Technology,” IEEE Trans. Microw. Theory Tech, vol. 54,no. 1, p.p. 88-95, Jan. 2006.
    K.-H. Cheng, C.-W. Lai, and Y.-L. Lo, “A CMOS VCO For 1V, 1GHz PLL Applications,” in Proceedings of ASIC, 2004, IEEE Asia-Pacific Conference, Aug. 2004, p.p. 150-153.
    J. G. Maneatis and M. A. Hoeowitz, “Precise Delay Generation Using Coupled Oscillators,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993.
    U. Guler and G. Dundar, “Modeling CMOS Ring Oscillator Performance as Randomness Source,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 61, no. 3, p.p. 712-724, March. 2014.
    A. A. Abidi, “Phase Noise and Jitter in CMOS Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1803-1816, Aug. 2006.
    L. Dai and R. Harjani, “Design of Low-Phase Noise CMOS Ring Oscillators,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal processing, vol. 49, no. 5, p.p. 328-338, May. 2002.
    B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, 1996.
    A. Homayoun and B. ravavi, “Analysis of Phase Noise in Phase/Frequency Detectors ,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 60, no. 3, p.p. 529-539, March. 2013.
    W. H. Chen, M. E. Inerowicz, and B. Jung, “Phase Frequency Detector with Minimal Blind Zone for Fast Frequency Acquisition ,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 57, no. 12, p.p. 936-940, Dec. 2010.
    R. He, J. Li, W. Rhee, and Z. Wang, “Transient Analysis of Nonlinear Settling Behavior in Charge-pump Phase-locked Loop Design,” IEEE Circuits and Systems, 2009. ISCAS 2009. IEEE Int. Symposium , Taipei, May. 2009, p.p. 469-472.
    A. Maxim, Design Challenge in Multi G-Hz Frequency Synthesizer, Austin, Tx, USA.
    Available:http://www.cerc.utexas.edu/msrf-seminar/y2005/tk050503_slides_maxim.pdf
    W. M. C. Sansen, Analog Design Essentials, Springer, 2006.
    劉深淵, 楊清淵, “鎖相迴路,"滄海書局, 2006.
    Z. Deng and A. M. Niknejad, “The Speed-power Trade-off in the Design of CMOS True-single-phase-clock Dividers,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2454- 2465, Nov. 2010.
    Q. Huang and R. Rogenmoser, “Speed Optimization of edge-triggered CMOS Circuits for Gigahertz Single-phase Clocks,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 456-465, Mar. 1996.
    高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.
    P. Maffezzoni and S. levantino, “Analysis of VCO Phase Noise in Charge-pump Phase-locked Loops,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 59, no. 10, p.p. 2163-2175, Oct. 2012.
    R. Hartely, RF/Microwave PC Board Design and Layout, L-3 Avionics Systems, USA.Available: https://www.jlab.org/accel/eecad/pdf/050rfdesign.pdf
    M. Loy and I. Sylla, “ISM-Band and Short Range Device Antennas,” Texas Instrument, application report, August. 2005.Available: http://www.ti.com
    /lit/an/swra046a/swra046a.pdf
    柏小松, 蔡慶龍, 鄧聖明, 天線設計與應用 使用ANSYS HFSS模擬器, 第二版, 鼎茂圖書出版股份有限公司, 2012.
    A. Maxim, “Noise and Spurious Tones Management Techniques for Multi-GHz RF-CMOS Frequency Synthesizers Operating in Large Mixed Analog-Digital SOCs,” EURASIP Journal on Wireless Communication and Networking, vol. 2006, p.p. 1-26, May.2006.
    W. F. Egan, Phase-Lock Basics, 2nd edition, Wiley-IEEE Press, 2007.
    A. Lacaita, S. Levantino, and C. Samori, Integrated Frequency Synthesizers for Wireless Systems, Cambridge University Press, 2007.
    T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design, 2nd edition, Wiley, 2013.
    R. Sarpeshkar, Ultra Low Power Bioelectronics, Cambridge University Press, 2010.
    W. H. Chen, W. F. Loke, and G. J. Thompson, B. Jung, “A 0.3.3.V,440-uW Frequency Synthesizer for Implantable medical devices,” IEEE Custom Integrated Circuits Conference, San Jose, CA, Sept. 2011, p.p. 1-4.
    W. Rhee, Multi-Bit Delta-Sigma Modulation Technique for Fraction-N Frequency Synthesizers, University of ILLionos, 2001.
    X. Li, S. Shekhar, D. J. Allstot, “"G" _"m" -boosted Common-gate LNA and Differential Colpitts VCO/QVCO in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005.
    Prof. M. H. Perrott, Lecture Notes, Dept. of EECS , MIT. Available: http://cppsim.org
    /PLL_Lectures/
    M. K. Hati, T. K. Bhattachartta “A Power Efficient and Constant-gm 1.8V CMOS Operational Transconductance Amplifier with Rail-to-rail Input and Output Ranges for Charge Pump in Phase-locked Loop,” IEEE Devices, Circuits and Systems, 2012 International Conference on, Coimbatore, March. 2012, p.p. 38-43.
    Hittite Microwave PLL Design & Analysis Software. Available: https://www.
    hittite.com/
    Advanced Design System(ADS) 2011. Available: http://www.home.agilent.com/
    zh-TW/pd-1835794/ads-2011-product-release?&cc=TW&lc=cht
    M. G. Kim, H. W. An, Y.M. Kang, J. Y. Lee, T. Y. Yun, “A Low-voltage, Low-power, and Low-noise UWB Mixer Using Bulk-injection and Switched Biasing Techniques,” IEEE Trans. Microw. Theory Tech, vol. 60,no. 8, p.p. 2486-2493, June. 2012.
    A. Amer, E. Hegazi and H. F. Ragaie, “A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323-328, Feb. 2007.
    M. Camus, B. Butaye, L. Garcia, M. Sie, B. Pellat and T. Parra, “A 5.4mW 0.07mm2 2.4GHz Front-end Receiver in 90nm CMOS for IEEE 802.15.4 WPAN, ” in IEEE Solid-State Circuits Conference,ISSCC 2008.Dig. of Technical Papers, San Francisco, CA, Feb. 2008, p.p. 368-620.
    A. Balankutty, S-A Y, Y-P Feng and P. R. Kinget, “A 0.6-V Zero-IF/Low-IF Receiver With Integrated Fractional- N Synthesizer for 2.4-GHz ISM-Band Applications,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 538-553, March. 2010.
    A. Balankutty and P. R. Kinget, “An Ultra-Low Voltage, Low-Noise, High Linearity 900-MHz Receiver With Digitally Calibrated In-Band Feed-Forward Interferer Cancellation in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2268-2283, Oct. 2011.
    R. Su, S. Lanzisera and K. S. J. Pister, “A 915MHz integrated FSK receiver front-end and a CMOS ring oscillator PLL built with standard cells, ” VLSI Design, Automatic and Test(VLSI-DAT), 2011 international Symposium on, Hsinchu, April. 2011, pp. 1-4.
    A. Balankutty, S-A Y, Y-P Feng and P. R. Kinget, “A 2.4-GHz MEMS-Based PLL-Free Multi-Channel Receiver With Channel Filtering at RF,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1689-1700, July. 2013.
    A. C. W. Wong, M. Dawkins, G. Devita, N. Kasparidis, A. katasimis, O. King, F. Lauria, J. Schiff and A. J. Burdett, “A 1 V 5 mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 186-198, Jan. 2013.
    F. Zhang, Y. Miyahara and B. P. Otis, “Design of a 300-mV 2.4-GHz Receiver Using Transformer-Coupled Techniques,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3190-3205, Dec. 2013.
    S. Sayilir, W.-F. Loke, J. Lee, H. Diamond, B. Epstein, D. L. Rhodes and J. Byunghoo, “A –90 dBm Sensitivity Wireless Transceiver Using VCO-PA-LNA-Switch-Modulator Co-Design for Low Power Insect-Based Wireless Sensor Networks,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 996-1006, April. 2014.

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE