簡易檢索 / 詳目顯示

研究生: 黃致豪
Huang, chih-hao
論文名稱: 應用低磁場核磁共振於人類乳腺癌偵測之研究
Study of human breast cancer detection based on low magnetic field NMR
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 63
中文關鍵詞: 低磁場核磁共振橫向弛豫時間乳腺癌檢測
外文關鍵詞: Low-field NMR, spin-spin relaxation time, breast cancer detection
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 惡性腫瘤也被稱為癌症,連續 35 年一直是十大死因之一,而乳腺癌是台灣第四大致癌死因。旨在早期發現的努力將有助於減少診斷階段,有可能改善生存和治癒的可能性,並使治療更簡單和更具成本效益。常用於乳癌檢測之方法包含:乳房 X 光攝影、超音波檢測、核磁共振影像等,有鑑於這些技術有各自的限制,本研究旨在建立一種低成本且便於操作的乳癌檢測方式。
    本研究採用低磁場核磁共振技術量測不同時期的乳腺細胞的橫向弛豫時間(T2)。結果顯示,惡性乳腺癌細胞的 T2 最短,正常乳腺細胞的 T2 最長。除此之外,本研究討論了預磁化技術與使用低磁場對 T2暫態響應的影響、黏滯性造成的影響、癌細胞鐵元素含量對 T2 的影響。依據這些探討,驗證本檢驗方法於乳癌檢測應用上的可行性。

    Malignant neoplasms are also known as cancers, which have been the top ten cause of death for 35 consecutive years, and breast cancer is the fourth most common cause of cancer death in Taiwan. Efforts aimed at early detection will help to reduce the stage at diagnosis, potentially improving the odds of survival and cure, and enabling simpler and more cost-effective treatment. Methods commonly used for breast cancer detection include mammography, ultrasound, and magnetic resonance imaging. Consider the limitations of these technologies, this study aims to establish a low-cost, easy to operate breast cancer detection method.
    In this study, low-field NMR techniques were used to measure the transverse relaxation time (T2) of mammary cells at different stages. The results showed that the T2 of malignant breast cancer cells was the shortest and T2 of normal breast cells was the longest. In addition, this study discussed the effects of pre-magnetization techniques and the use of low magnetic fields on T2 transient response, the effects of viscosity, and the influence of iron content in cancer cells on T2. Based on these discussions, verifying the feasibility of method from this study for breast cancer detection.

    中文摘要............... I Abstract .............. II ACKNOWLEDGE ............. III CONTENTS .............V LIST OF TABLE ............ VII LIST OF FIGURE............ VIII Chapter 1 Introduction ........... 1 1.1 Background .......... 1 1.2 Related work .......... 4 1.3 Motivation .......... 7 Chapter 2 MRI theory ............ 9 2.1 T2 relaxation time analysis ......... 9 2.2 Gyrolyzer ........... 24 Chapter 3 experiment setup and material ......... 42 3.1 Cell line ............ 42 3.2 Cell culture ........... 42 3.3 sample preparation ......... 43 3.4 Gyrolyzer set up & experiment operation ...... 44 Chapter 4 Measurement Result and Discussion....... 48 VI 4.1 Measurement result .......... 48 Chapter 5 Conclusion and future work ........ 60 5.1 Conclusion and future work ....... 60 Chapter 6 Reference ............. 61

    [1]. Senkus, E., Kyriakides, S., Penault-Llorca, F., Poortmans, P., Thompson, A., Zackrisson, S., ... & ESMO Guidelines Working Group. (2013). Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 24(suppl_6), vi7-vi23.
    [2]. Lee, C. H., Dershaw, D. D., Kopans, D., Evans, P., Monsees, B., Monticciolo, D., ... & Hendrick, E. (2010). Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. Journal of the American college of radiology, 7(1), 18-27.
    [3]. Kriege, M., Brekelmans, C. T., Boetes, C., Besnard, P. E., Zonderland, H. M., Obdeijn, I. M., ... & Muller, S. H. (2004). Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. New England Journal of Medicine, 351(5), 427-437.
    [4]. Kuhl, C. K., Schrading, S., Leutner, C. C., Morakkabati-Spitz, N., Wardelmann, E., Fimmers, R., ... & Schild, H. H. (2005). Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. Journal of clinical oncology, 23(33), 8469-8476.
    [5]. Lee, S. G., Orel, S. G., Woo, I. J., Cruz-Jove, E., Putt, M. E., Solin, L. J., ... & Schnall, M. D. (2003). MR imaging screening of the contralateral breast in patients with newly diagnosed breast cancer: preliminary results. Radiology, 226(3), 773-778.
    [6]. Lehman, C. D., Gatsonis, C., Kuhl, C. K., Hendrick, R. E., Pisano, E. D., Hanna, L., ... & DePeri, E. R. (2007). MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. New England Journal of Medicine, 356(13), 1295-1303.
    [7]. Soares, F., Janela, F., Pereira, M., Seabra, J., & Freire, M. M. (2014). Classification of breast masses on contrast-enhanced magnetic resonance images through log detrended fluctuation cumulant-based multifractal analysis. IEEE Systems Journal, 8(3), 929-938.
    [8]. Anderson, B. O., Braun, S., Lim, S., Smith, R. A., Taplin, S., & Thomas, D. B. (2003).
    Early detection of breast cancer in countries with limited resources. The breast journal, 9(s2).
    [9]. American Cancer Society. (2007). Breast Cancer Facts & Figures. American Cancer Society.
    [10]. Bohacik, J., & Zabovsky, M. (2017, November). Nearest neighbor method using non-nested generalized exemplars in breast cancer diagnosis. In Informatics, 2017 IEEE 14th International Scientific Conference on (pp. 40-44). IEEE.
    [11]. O’Shaughnessy, J. (2005). Extending survival with chemotherapy in metastatic breast cancer. The oncologist, 10(Supplement 3), 20-29.
    [12]. Ozmen, N., Dapp, R., Zapf, M., Gemmeke, H., Ruiter, N. V., & van Dongen, K. W. (2015). Comparing different ultrasound imaging methods for breast cancer detection. IEEE
    transactions on ultrasonics, ferroelectrics, and frequency control, 62(4), 637-646.
    [13]. Dodge, D. G., & Kegel, J. L. (2006). Advances in Breast Cancer Screening and Diagnosis. The Journal of Lancaster General Hospital, 1(2).
    [14]. Rao, A. A., Feneis, J., Lalonde, C., & Ojeda-Fournier, H. (2016). A pictorial review of changes in the BI-RADS fifth edition. Radiographics, 36(3), 623-639.
    [15]. Hahn, E. L. (1950). Spin echoes. Physical review, 80(4), 580.
    [16]. Chavhan, G. B., Babyn, P. S., Thomas, B., Shroff, M. M., & Haacke, E. M. (2009). Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics, 29(5), 1433-1449.
    [17]. Zhufeng Ma. (2014). Mechanism Study on the Role of Trace element Iron in Migration of Human Breast Cancer Cells (Master's thesis, Shanghai Jiao Tong University).
    [18]. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868-9872.
    [19]. Pauling, L., & Coryell, C. D. (1936). The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proceedings of the National Academy of Sciences, 22(4), 210-216.
    [20]. Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical journal, 64(3), 803-812.
    [21]. Greenberg, Y. S. (1998). Application of superconducting quantum interference devices to nuclear magnetic resonance. Reviews of Modern Physics, 70(1), 175.
    [22]. Jin, Y. R., Wang, N., Li, S., Tian, Y., Ren, Y. F., Wu, Y. L., ... & Chen, G. H. (2011). The effect of low frequency external field disturbance on the SQUID based ultra-low field NMR measurements. IEEE Transactions on Applied Superconductivity, 21(3), 518-521.
    [23]. Sims, J. R., Schillig, J. B., Swenson, C. A., Gardner, D. L., Matlashov, A. N., & Ammerman, C. N. (2010). Low-noise pulsed pre-polarization magnet systems for ultra-low field NMR. IEEE Transactions on Applied Superconductivity, 20(3), 752-755.
    [24]. Volegov, P. L., Matlachov, A. N., & Kraus Jr, R. H. (2006). Ultra-low field NMR measurements of liquids and gases with short relaxation times. Journal of Magnetic Resonance, 183(1), 134-141.
    [25]. Ren, Z. H., Obruchkov, S., Lu, D. W., Dykstra, R., & Huang, S. Y. (2017, November). A low-field portable magnetic resonance imaging system for head imaging. In Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), 2017 (pp. 3042-3044). IEEE.
    [26]. Bonilla, I., Wachowicz, K., & Snyder, R. E. (2003, September). Identifying micro-anatomical compartments of mammalian optic nerve based on NMR T/sub 2/-relaxation analysis. In Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE(Vol. 1, pp. 490-493). IEEE.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE