簡易檢索 / 詳目顯示

研究生: 龔軒志
Gong, Syuan-Jhih
論文名稱: 藍綠色矽酸鹽螢光粉之合成及其應用於高演色性白光LED
The Synthesis of Blue-Green Silicate Phosphors and their Applications in White Light-Emitting Diodes with High CRI Values
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 矽酸鹽類螢光粉分層塗佈結構高演色性白光LED
外文關鍵詞: silicate phosphors, separated-layer coating structure, white light-emitting diodes with high CRI
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了製作高演色性之白光LED,利用近紫外LED驅動紅綠藍三基色螢光粉為一可行的方式,因此本研究利用固態反應法合成適用近紫外激發之矽酸鹽類
    Ba1-xSrxZrSi3O9:Eu2+藍色螢光粉與Ba2MgSi2O7:Eu2+綠色螢光粉。前者螢光粉隨Sr2+摻雜濃度提高放射峰由477位移至483 nm;後者放射峰為508 nm,且熱穩定性T50均大於140oC。在405 nm波段激發下,最佳化之Ba0.5Sr0.4ZrSi3O9:0.1Eu2+及Ba1.94MgSi2O7:0.06Eu2+螢光粉的外部量子效率分別為44.14%與35.64%,由於此兩種螢光粉具有寬廣的激發光譜,在300-420 nm有較強的吸收,皆適合應用在近紫外LED。
    其中Ba1-xSrxZrSi3O9:Eu2+螢光粉利用Sr2+取代Ba2+,主體晶格場變強,結晶性變好,更多Eu3+被還原成Eu2+,且摻雜Sr2+會使結構的非對稱性增加,Eu2+之間的能量傳遞被阻礙,可降低其非輻射緩解機率,濃度淬滅點由6mol%提升至10 mol%,發光強度提升34%,反觀以Ca2+取代時,晶格扭曲過大,不易取代主體中Ba2+位置,合成時有雜項產生,發光強度大幅下降;最後以NH4Cl作為助熔劑,可幫助離子擴散與結晶反應之進行,加入8wt% NH4Cl可提升Ba0.5Sr0.4ZrSi3O9:0.1Eu2+藍色螢光粉外部量子效率5%。Ba1.94MgSi2O7:0.06Eu2+綠色螢光粉部分則利用過量Si的摻雜可以補足煆燒時Si的揮發,成功合成出單一結晶相之化合物。
    將上述合成藍色與綠色螢光粉搭配氮化物Ca2Si5N8:Eu2+紅色螢光粉封裝在近紫外405 nm LED上,利用遠距式分層塗佈方式,紅色螢光粉在下層,藍色混和綠色螢光粉在上層塗佈結構,藉由調整螢光粉之厚度製作不同色溫之高演色性白光LED,其最佳白光LED之照明效率、C.I.E座標、色溫、演色性分別為22.21 lm/W、(0.3566, 0.3582)、4606 K、93.8。

    In this study, Ba1-xSrxZrSi3O9:Eu2+ and Ba2MgSi2O7:Eu2+ silicate phosphors were synthesized, which could be well excited by near-ultraviolet (near-UV) lights by the solid-state reaction. The emission wavelength of the former red shifted from 477 to 483 nm with increase of Sr2+ content and the latter was at 508 nm, both of them exhibited good thermal stability with T50 > 140oC. The external quantum efficiency of optimized Ba0.5Sr0.4ZrSi3O9:0.1Eu2+ and Ba1.94MgSi2O7:0.06Eu2+ were 44.14% and 35.64% under 405-nm excitation, respectively.

    The pc-WLEDs were fabricated by the near-UV LED chips (405 nm), Ba1.94MgSi2O7:0.06Eu2+, Ba0.5Sr0.4ZrSi3O9:0.1Eu2+ and Ca2Si5N8:Eu2+ phosphors utilizing separated-layers structure (red phosphor layer was above blue and green phosphor) and the silicone gel as the remote layers. By adjusting the thickness of the phosphors to produce white LEDs of high CRI with different color temperature. The optimum luminous efficiency, C.I.E. coordinates, correlated color temperature (CCT), and CRI were 22.21 lm/W, (0.3566, 0.3582), 4606 K, and 93.8, respectively.

    摘要 I 英文延伸摘要 II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 第二章 理論基礎與文獻回顧 5 2-1 螢光粉之介紹 5 2-1-1螢光體發光原理與過程 7 2-1-2 螢光體性質 14 2-1-3 發光中心之種類與原理 15 2-1-4 濃度淬滅理論 17 2-2 螢光材料之組成與設計 17 2-2-1 主體晶格之選擇 17 2-2-2 活化劑之選擇 19 2-2-3 抑制劑之選擇 20 2-3 稀土元素 20 2-3-1 稀土元素之電子結構 20 2-3-2 稀土元素之光學躍遷 21 2-4 固態反應法 23 2-5 色彩學 24 2-5-1 色度座標 (Commission International deI’Eclairage, C.I.E.) 24 2-5-2 色溫與相對色溫(correlated color temperature, CCT) 25 2-5-3 演色性指數(color rendering index, CRI) 27 2-5-4 光通量 27 2-6文獻回顧 30 2-6-1 BaZrSi3O9螢光粉近年文獻回顧 30 2-6-2 Ba2MgSi2O7螢光粉近年文獻回顧 32 第三章 實驗步驟與儀器原理 34 3-1實驗藥品及近紫外光LED特性 34 3-2實驗步驟 35 3-2-1 Ba2-xMgSi2O7:xEu2+螢光粉體之合成 35 3-2-2 Ba1-x-ySryZrSi3O9:xEu2+螢光粉體之合成 35 3-2-3白光LED之製作 37 3-3量測系統及特性分析 39 3-3-1量測儀器設備 39 3-3-2 特性分析 40 第四章 結果與討論 45 4-1 以固態法合成Ba1-xZrSi3O9:xEu2+藍色螢光粉之特性分析 45 4-1-1 煆燒溫度對於Ba1-xZrSi3O9:xEu2+螢光粉的影響 45 4-1-2 活化劑(Eu2O3)濃度對於Ba1-xZrSi3O9:xEu2+螢光粉的影響 47 4-2 Ba0.94-xSrxZrSi3O9:0.06Eu2+ (x=0-0.5)螢光粉之特性分析 50 4-2-1 Ba0.94-xSrxZrSi3O9:0.06Eu2+螢光粉之結構分析 50 4-2-2 Ba0.94-xSrxZrSi3O9:0.06Eu2+螢光粉之光譜特性分析 52 4-2-3 Ba0.94-xSrxZrSi3O9:0.06Eu2+螢光粉之EDX分析 55 4-2-4 Ba0.94-xSrxZrSi3O9:0.06Eu2+螢光粉之SEM 58 4-2-5 活化劑(Eu2O3)濃度對Ba0.6-xSr0.4ZrSi3O9:xEu2+螢光粉之影響59 4-2-6 以氯化銨(NH4Cl)為助熔劑,對Ba0.5Sr0.4ZrSi3O9:0.1Eu2+螢光粉之發光強度影響 62 4-2-7 Ba0.54M0.4ZrSi3O9:0.06Eu2+(M=Ba, Sr, Ca)螢光粉之特性分析比較 64 4-3 以固態法合成Ba2-xMgSi2O7:xEu2+綠色螢光粉之特性分析 66 4-3-1 過量摻雜Si元素對於Ba1.94MgSi2+xO7:0.06Eu2+螢光粉的影響 66 4-3-2 活化劑(Eu2O3)濃度對於Ba2-xMgSi2O7:xEu2+螢光粉的影響 68 4-4 應用於白光LED之螢光粉特性比較 70 4-4-1 熱穩定性分析 70 4-4-2 量子效率量測 74 4-4-3 高溫高濕可靠度測試 74 4-5 高演色性白光LED之製作 76 4-5-1 螢光膠塗佈厚度對白光LED光特性分析 78 4-5-2 白光LED之高溫高濕可靠度測試 82 第五章 結論 84 參考文獻 86

    [1] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A: Materials Science & Processing, 64, 417-18 (1997).
    [2] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor,” Optics Letters, 29, 2001-03 (2004).
    [3] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technology Letters, 17, 1160-62 (2005).
    [4] Y. Liu, X. Zhang, Z. Hao, W. Lu, X. Liu, X. J. Wang, and J. Zhang, “Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency,” Journal of Physics D: Applied Physics, 44, 075402, 6pp (2011).
    [5] Y.Shimizu, K.Sakano, Y.Noguchi, and T.Moriguchi, “Light emitting device having a nitride compound semiconducor and a phosphor containing a garnet fluorescent material,” United States Patent:5998925 (1997).
    [6] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華科技 (2006).
    [7] 楊俊英,電子產業用螢光材料之調查,工研院,7 (1992).
    [8] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Applied Physics Letters, 92, 143309, 3pp (2008).
    [9] Y. Shuai, Y.Z. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures,” IEEE Photonics Technology Letters, 23, 137-139 (2011).
    [10] R. Y. Yu, S. Z. Jin, S. Y. Cen, and P. Liang, “Effect of the Phosphor Geometry on the Luminous Flux of Phosphor-Converted Light-Emitting Diodes,” IEEE Photonics Technology Letters, 22, 1765-1767 (2010).
    [11] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic Phosphor Size Dependence of Luminous Efficacy for Typical White LED Emitters,” IEEE Photonics Technology Letters, 23, 552-554 (2011).
    [12] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” Journal of The Electrochemical Society, 159, J96-J106 (2012).
    [13] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Applied Optics, 49, 247-257 (2010).
    [14] J. P. You, Y.-H. Lin, N. T. Tran, and F. G. Shi, “Phosphor Concentration Effects on Optothermal Characteristics of Phosphor Converted White Light-Emitting Diodes,” Journal of Electronic Packaging, 132, 031010-031012 (2010).
    [15] N. T. Tran and F. G. Shi, “Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes,” Journal of Lightwave Technology, 26, 3556-3559 (2008).
    [16] Z.-Y. Liu, S. Liu, K. Wang, and X.-B. Luo, “Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation,” IEEE Transactions on Components and Packaging Technologies, 33, 680-687 (2010).
    [17] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources,” Journal of Lightwave Technology, 28, 3226-3232 (2010).
    [18] C.-C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang, H.-L. Hu, and W.-H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes,” IEEE Transactions on Device and Materials Reliability, 9, 367-370 (2009).
    [19] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” Journal of Lightwave Technology, 27, 5145-5149 (2009).
    [20] C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F. P. Wenzl, “The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources,” IEEE Journal of Selected Topics in Quantum Electronics, 15, 1181-1188 (2009).
    [21] S. C. Huang, J. K. Wu, and W.-J. Hsu, “Particle Size Effect on the Packaging Performance of YAG:Ce Phosphors in White LEDs,” International of Journal Applied Ceramic Technology, 6, 465–469 (2009).
    [22] T. Fukui, K. Kamon, J. Takeshita, H. Hayashi, T. Miyachi, Y. Uchida, S. Kurai, and T. Taguchi, “Superior Illuminant Characteristics of Color Rendering and Luminous Efficacy in Multilayered Phosphor Conversion White Light Sources Excited by Near-Ultraviolet Light-Emitting Diodes,” Japanese Journal of Applied Physics, 48, 112101, 6pp (2009).
    [23] Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Japanese Journal of Applied Physics, 49, 100203, 3pp (2010).
    [24] Y.-H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Letters, 34, 1-3 (2009).
    [25] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Optics Express, 18, 5055-5060 (2010).
    [26] 劉如熹、許育賓、徐大正、丁逸聖、林群哲、解榮軍、廣琦尚登、黃振東、陳海英、肖國瑋、蘇宏元,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書 (2008).
    [27] 蘇勉曾、吳世康,發光材料,全華科技,第四卷,1-39 (2004).
    [28] 林麗玉,奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究, 國立交通大學應用化學研究所碩士論文 (2000).
    [29] A. H. Kitai, “Visible luminescence-Solid state materials &applications,” Chapman & Hall: London (1992).
    [30] R. A. Swalin, “Thermodynamics of Solids,” John Wiley & Sons, 335 (1972).
    [31] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, and L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Althin films,” Materials Science and Engineering: B, 52, 59-62 (1998).
    [32] R. C. Ropp, “Luminescence and solid state.,” Elsevier Science Publishers, B. V. The Netherlands (1991).
    [33] G. Blasse, and B. Grabmaier, “Luminescent materials,” Springer-Verlag, Berlin (1994).
    [34] 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技 (2005).
    [35] Z. Pan, S. H. Morgan. A. Loper, V. King, B. H. Long and W. E. Collins, “Infrared to visible upconversion in Er3+-doped-lead-germanate glass: effects of Er3+ ion concentration,” Journal of Applied Physics, 77, 4688-92 (1995).
    [36] 曹正樸,基本材料科學,台灣商務印書館股份有限公司,台北,民64。
    [37] E. F. Schubert, “LIGHT-EMITTING DIODES.” New York: Cambridge University (2006).
    [38] 林蘇逸,高演色性白光發光二極體之研究,國立臺灣大學電機資訊學院光電工程學研究所碩士論文 (2007).
    [39] I. Ashdown, “Radiosity: A Programmer's Perspective” John Wiley & Sons, 14-27 (2002).
    [40] D. Y. Wang, C. H. Huang, Y. C. Wu, and T. M. Chen, "BaZrSi3O9:Eu2+: a cyan-emitting phosphor with high quantum efficiency for white light-emitting diodes," Journal of Materials Chemistry, 21, 10818 (2011).
    [41] G. Blasse and A. Bril, “luorescence and Structure of Barium Zirconium Trisilicate,” Journal of Solid State Chemistry, 2, 105108 (1970).
    [42] Y. Takahashi, K. Iwasaki, H. Masai and T. Fujiwara, “Afterglow in synthetic bazirite, BaZrSi3O9,” Journal of the Ceramic Society of Japan, 2, 357-360 (2008).
    [43] Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura and S. Inoue, “Raman spectroscopic study of benitoite-type compounds,” Journal of the Ceramic Society of Japan, 10, 1139-1142 (2008).
    [44] K. Iwasaki, Y. Takahashi, H. Masai, and T. Fujiwara, “Blue photoluminescence, greenish-blue afterglow and their Ti-concentration dependence in rare earth-free bazirite-type BaZr1-xTixSi3O9,” Optics Express, 17, 18054-62 (2009).
    [45] D. Y. Wang, Y. C. Wu, T. M. Chen, “Synthesis, crystal structure, and photoluminescence of a novel blue-green emitting phosphor: BaHfSi3O9:Eu2+,” Journal of Materials Chemistry, 21, 18261 (2011).
    [46] Y. Jin, Y. Hu, L. Chen, X. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9:R3+ (R=Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Optical Materials, (2014).
    [47] D. He, S. Yanning, H. Tao, Z. Dan, “Luminescence properties of M2MgSi2O7: Re (M=Ba, Sr, Ca) (Re=Eu2+, Ce3+, Tb3+),” Trans Tech Publications Ltd, Laubisrutistr.24, Stafa-Zuerich, Switzerland, 622-624 (2007).
    [48] D. He, Y. Shi, D. Zhou, T. Hou, “Photoluminescence properties of M2MgSi2O7: Re2+(M=Ba,Sr,Ca),” Journal of Luminescence, 158-161 (2007).
    [49] C. Shen, K. Li, Y. Yang, S. Jin, “White light emitting from Ba2MgSi2O7:Ce3+, Tb3+ phosphor,” CLEO/Pacific Rim 2009 - 8th Pacific Rim Conference on Lasers and Electro-Optics, (2009).
    [50] C. Shen, Y. Yang, S. Jin, H. Feng, “Synthesis and luminous characteristics of Ba2MgSi2−xAlxO7:0.1Eu2+, 0.1Mn2+ phosphor for WLED,” Optik- International Journal for Light and Electron Optics, 121, 29-32 (2010).
    [51] H. Wu, Y. Hu, Y. Wang, C. Fu, “The luminescent properties of the substitution of Ho3+ for Dy3+ in the M2MgSi2O7: Eu2+, Dy3+ (M:Sr, Ca) long afterglow phosphors,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 172, 276-282 (2010).
    [52] S. Yao, Y. Li, L. Xue, Y. Yan, “Luminescent Properties of Ba2(Mg,Zn)Si2O7:Eu2+ Particles as Potential Blue-Green Phosphors For Ultraviolet Light-Emitting Diodes,” Journal of the American Ceramic Society, 93, 3793-3797 (2010).
    [53] H.Y. Wu, Y.H. Hu, Y.H. Wang, C.J. Fu, F.W. Kang, “Synthesis of Eu2+ and Dy3+ codoped Ba2MgSi2O7 phosphor for energy storage,” International Conference on Chemical Engineering and Advanced Materials, (2011).
    [54] H. Wu, Y. Hu, B. Zeng, Z. Mou, L. Deng, “Tunable luminescent properties by adjusting the Sr/Ba ratio in Sr1.97−xBaxMgSi2O7: 0.01Eu2+, 0.02Dy3+ phosphors,“ Journal of Physics and Chemistry of Solids, 72, 1284-1289 (2011).
    [55] J. M. Kim, S. J. Park, K. H. Kim, H. W. Choi, “The luminescence properties of M2MgSi2O7:Eu2+ (M=Sr, Ba) nano phosphor in ultraviolet light emitting diodes,” Ceramics International, 38, S571-S575 (2012).
    [56] T. Kim, Y. Kim, S. Kang, “Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors,” Applied Physics B, 106,1009-1013 (2012).
    [57] T.T.H. Tam, N.V. Du, N.D.T. Kien, C.X. Thang, N.D. Cuong, P.T. Huy, N.D. Chien, D.H. Nguyen, ”Co-precipitation synthesis and optical properties of green-emitting Ba2MgSi2O7:Eu2+ phosphor,” Journal of Luminescence, 147, 358-362 (2014).
    [58] L. B. Pang, S. J. Gao, Z. J. Gao, H. L. Li, Z. J. Wang, “A novel white-bluish emitting phosphor of (Ba0.49Sr0.49)2-B2P2O10:0.02Eu2+ for white LEDs,” Optoelectronics Letters, 9, 282-284 (2013).
    [59] J. K. Han, A. Piqutte, M. E. Hannah, G. A. Hirata, J. B. Talbot, K. C. Mishra, J. McKittrick, “Analysis of (Ba,Ca,Sr)3MgSi2O8:Eu2+, Mn2+ phosphors for application in solid state lighting,” Journal of Luminescence, 148, 1-5 (2014).
    [60] C. W. Lee, V. Petrykin, M. Kakihana, “Synthesis and effect of Sr substitution on fluorescence of new Ba2−xSrxZnS3: Eu2+ red phosphor: Considerable enhancement of emission intensity,” Journal of Crystal Growth, 311, 647-650 (2009).
    [61] K. B. Kim, Y. I. Kim, H. G. Chun, T. Y. Cho, J. S. Jung, and J. G. Kang, “Structural and Optical Properties of BaMgAl10O17:Eu2+ Phosphor,” Journal of Materials Chemistry, 14, 5045-5052 (2002).
    [62] S. A. Yan, Y. S. Chang, W. S. Hwang, Y. H. Chang, “Enhancement of luminescence properties via the substitution of Ba2+ by Sr2+ and Ca2+ in the white phosphors Ba1−yMyLa2−xWO7:xDy3+ (M=Sr, Ca) (x=0.01–0.4, y=0–0.4),” Journal of Luminescence, 132) 1867-1872 (2012.
    [63] H. S. Kang, Y. C. Kang, K. Y. Jung, S. B. Park, “Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis,” Materials Science and Engineering: B, 121, 81-85(2005).
    [64] H. L. Li, R. J. Xie, N. Hirosaki, T. Suehiro, Y. Yajima, “Phase Purity and Luminescence Properties of Fine Ca-α-SiAlON:Eu Phosphors Synthesized by Gas Reduction Nitridation Method,” Journal of The Electrochemical Society, 155, J175 (2008).
    [65] J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, H. L. Park, “Full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphors for white-light-emitting diodes,” Solid State Communications, 135, 21-24 (2005).
    [66] Y. Li, D. W. He, Y. S. Wang, F. Ming, Y. Wu, F. Miao, “Structure and Luminescence of Ba3MgSi2O8: Eu2+, Mn2+ Phosphors,” Advanced Materials Research, 399-401, 1016-1019 (2011).
    [67] J. Qin, C. Hu, B. Lei, J. Li, Y. Liu, S. Ye, and M. Pan, "Temperature-dependent luminescence characteristic of SrSi2O2N2: Eu2+ phosphor and its thermal quenching behavior," Journal of Materials Science and Technology, 30, 290-294 (2014).
    [68] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, 299-305 (1991).
    [69] C. M. Tan, B. K. Eric Chen, G. Xu, and Y. J. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectronics Reliability, 49, 1226–1230 (2009).
    [70] A. C. P. Rocha, L. H. C. Andrade, S. M. Lima, A. M. Farias, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Tunable color temperature of Ce3+/Eu2+, Eu3+ co-doped low silica aluminosilicate glasses for white lighting,” Optics Express, 20, 10034-10041 (2012).
    [71] 方盈倩,開發照明用螢光體與螢光材料分析,成功大學電機工程學系博士論文 (2011).
    [72] 蔡鴻亦,鈣-矽(氧)化物螢光粉之合成及應用於白光LED之分層遠距式結構探討,成功大學電機工程學系碩士論文 (2013).

    無法下載圖示 校內:2019-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE