簡易檢索 / 詳目顯示

研究生: 劉忠艷
Liu, Chung-Yen
論文名稱: 適用於3GPP-LTE/LTE-A系統下具高產出率與低複雜度交錯器之渦輪解碼器設計
High-Throughput Turbo Decoder Design with Low-Complexity Interleaver for 3GPP-LTE/LTE-A Systems
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 56
中文關鍵詞: 渦輪碼平行化解碼交錯器3GPP-LTE/LTE-A系統
外文關鍵詞: Turbo codes, parallel decoding, interleaver, 3GPP-LTE/LTE-A systems
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 渦輪碼(turbo code)因為能夠提供優秀的錯誤更正能力,而被廣泛地運用在各種的無線通訊標準中。作為新一代的通訊標準,3GPP-LTE/LTE-A系統採用了渦輪碼作為其通道編碼(channel coding)的架構,並且有著更高產出率(throughput)的需求。為了滿足3GPP-LTE/LTE-A系統中對於產出率的要求,經常會使用高度平行化的處理架構來提升渦輪解碼器的產出率。如何降低平行化交錯器(interleaver)的複雜度以及有效的提高產出率亦是渦輪碼設計中重要的課題之一。
    在本論文中,我們藉由二維的相差值運算交錯器以及簡化前置運算的平行式視窗演算法來呈現一個高效能的解碼器架構,並且達到3GPP-LTE/LTE-A系統率的要求。在所提出的交錯器架構中,運用了具有低複雜度計算方法且可以支持高度平行化的解碼架構。除此之外,在最大事後機率演算法中則是提出了一個可以藉由減少前置運算來有效地提升產出率而不降低解碼效能表現的演算法。實驗結果顯示,此渦輪解碼器相較於其他高產出率的設計具有大約24.53%常態化面積效率的改善。

    Turbo codes have been widely adopted by wireless communication standards due to their excellent error correction performance. As the next-generation standard, 3GPP-LTE/LTE-A systems use turbo coding as the channel coding scheme with a higher throughput demand. To meet this higher data rate requirement, the highly-parallel turbo decoder architecture is frequently applied. How to reduce the complexity of parallel interleaver and increase the throughput rate are essential to the turbo decoder design.
    In this thesis, an efficient architecture of turbo decoder is presented by using two-dimension differential calculation interleaver and dummy calculation-reduced parallel-window algorithm to achieve the throughput demand in 3GPP-LTE/LTE-A systems. The proposed interleaver can support highly parallel soft-input/soft-output (SISO) decoding architecture with low complexity computation. Furthermore, the proposed decoding algorithm can increase the throughput rate without performance degradation by reducing the dummy calculation. Experimental results show that the developed turbo decoder can improve the normalized area efficiency by about 24.53% compared to related works for high-throughput implementation.

    摘   要 iv Abstract v 誌   謝 vi Contents vii List of Tables ix List of Figures x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Fundamentals of Turbo Codes for 3GPP-LTE/LTE-A Systems 3 2.1 Encoding of Turbo Codes 3 2.1.1 Recursive Systematic Encoder 4 2.1.2 Turbo Code Internal Interleaver 6 2.2 Decoding of Turbo Codes 9 2.2.1 Maximum A Posteriori (MAP) Algorithm 10 2.2.2 Max-Log-MAP Algorithm 12 2.3 Window-Based MAP Decoding 14 2.3.1 Sliding-Window (SW) MAP Decoding 15 2.3.2 Parallel-Window (PW) MAP Decoding 16 2.3.3 Area-Efficient SW Decoding 18 Chapter 3 High-Throughput Turbo Decoder for 3GPP-LTE/LTE-A Systems 20 3.1 Low-Complexity Interleaved Address Generator for Highly-Parallel Architecture 20 3.1.1 Two-Dimension Differential Calculation 21 3.1.2 Extrinsic Information Memory Management 26 3.2 High-Throughput Soft-Input/Soft-Output (SISO) Decoder 26 3.2.1 Dummy Calculation-Reduced Parallel-Window MAP Decoding 27 3.2.2 Memory Architecture for PW Based MAP Decoding 29 3.2.3 Dual-Mode Decoding Schedule 31 3.3 Comparison and Analysis 34 3.3.1 Performance Comparison 34 3.3.2 Complexity Comparison of Different Interleavers 36 3.3.3 Different Window-Based Decoding Comparison 40 Chapter 4 Proposed Turbo Decoder Design for 3GPP-LTE/LTE-A Systems 42 4.1 Hardware Architecture 42 4.1.1 Overall Architecture 42 4.1.2 Highly-Parallel Interleaved Address Generator 44 4.1.3 Soft-Input/Soft-Output (SISO) Decoder 45 4.1.4 Extrinsic Information Memory 46 4.2 Design and Verification Flow 47 4.3 Experimental Results and Comparison 49 Chapter 5 Conclusions and Future Work 52 5.1 Conclusions 52 5.2 Future Work 53 Bibliography 54

    [1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Commun. (ICC), May 1993, pp. 1064–1070.
    [2] J. H. Kim and I. C. Park, “A unified parallel radix-4 turbo decoder for mobile WiMAX and 3GPP-LTE,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2009, pp. 487–490.
    [3] C. C. Wong, Y. Y. Lee and H. C. Huang, “A 188-size 2.1mm2 reconfigurable turbo decoder chip with parallel architecture for 3GPP LTE system,” in Proc. Symp. VLSI Circuits, June 2009, pp. 288–289.
    [4] 3GPP TS 36.212 v8.6.0 (2009-03): “Multiplexing and Channel Coding (Release 8)”.
    [5] O. Y. Takeshita, “On maximum contention-free interleavers and permutation polynomials over integer rings,” IEEE Trans. Inf. Theory, vol.52, no. 3, pp. 1249–1253, Mar. 2006.
    [6] J. Hagenauer and P. Hoeher, "A Viterbi algorithm with soft-decision outputs and its applications," in Proc. IEEE Global Telecom. Conf. (GLOBECOM), vol. 3, Nov. 1989, pp. 1680–1686.
    [7] J. Hagenauer and L. Papke, “Decoding turbo codes with the soft output Viterbi algorithm (SOVA),” in Proc. IEEE Int. Symp. Information Theory (ISIT’94), June 1994, pp. 164.
    [8] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, no. 2, pp. 284–287, Mar. 1974.
    [9] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf. Commun. (ICC’95), June 1995, pp. 1009–1013.
    [10] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding,” European Trans. Telecommun., vol. 8, pp. 119–125, Mar./Apr. 1997.
    [11] J. Vogt and A. Finger, “Improving the Max-Log-MAP turbo decoder,” Electronics Lett., vol. 36, no. 23, pp. 1937–1939, Nov. 2000.
    [12] H. Claussen, H. R. Karimi, and B. Mulgrew, “Improved max-log map turbo decoding using maximum mutual information combining,” 14th IEEE Proc. Personal, Indoor and Mobile Radio Commun. (PIMRC 2003), 2003, Sept. 7–10.
    [13] L. Papke, P. Robertson, and E. Villebrun, “Improved decoding with the SOVA in a parallel concatenated (Turbo-code) scheme,” IEEE Int. Conf. Commun. (ICC’96), June 1996, pp. 102–106.
    [14] A. J. Viterbi, “An intuitive justification and simplified implementation of the MAP decoder for convolutional codes,” IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 260–264, Feb. 1998.
    [15] C. M. Wu, M. D. Shieh, and C. H. Wu, “Memory arrangements in turbo decoders using sliding-window BCJR algorithm,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2002, pp. V-557–V-560.
    [16] C. M. Wu, M. D. Shieh, C. H. Wu, Y.-T. Hwang, and J.-H. Chen, “VLSI architectural design tradeoffs for sliding-window Log-MAP decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no.4, pp. 439–447, Apr. 2005.
    [17] A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architectures with optimized memory and power consumption,” in Proc. IEEE Workshop Signal Processing Syst. (SiPS), Oct. 2000, pp. 265–274.
    [18] M. M. Mansour and N. R. Shanbhag, “VLSI architectures for SISO-APP decoders,” IEEE Trans. Very Large Scale Integrat. (VLSI) Syst., vol. 11, no. 4, pp. 627–650, Aug. 2003
    [19] Z. Wang, Z. Chi, and K. K. Parhi, “Area-efficient high-speed decoding schemes for turbo decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 6, pp. 902–912, Dec. 2002.
    [20] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 8–17, Jan. 2011.
    [21] Y. Wang, “Turbo code parallel interleaver and parallel interleaving method thereof,” EP Patent 2 621 091 A1, July 31, 2013.
    [22] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship, “ARP and QPP interleavers for LTE turbo coding,” in Proc. IEEE Wireless Commun. and Networking Conf. (WCNC), Mar. 2008, pp. 1032–1037.
    [23] Y. Sun and J. R. Cavallaro, “Efficient hardware implement of a highly-parallel 3GPP LTE/LTE-advance turbo decoder,” Elsevier Science, no. 44, pp. 305–315, July 2010.
    [24] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE turbo code decoder,” in Proc. Design, Autom. Test Eur. (DATE), Mar. 2010, pp. 1420–1425.
    [25] C. Roth, S. Belfanti, C. Benkeser, and Q. Huang, “Efficient parallel turbo-decoding for high-throughput wireless systems,” IEEE Trans. Circuits Syst. I, vol. 61, no. 6, pp. 1824–1835, June 2014.
    [26] C. C. Wong and H. C. Huang, “Reconfigurable turbo decoder with parallel architecture for 3GPP LTE system,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 566–570, July 2010.

    無法下載圖示 校內:2019-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE