| 研究生: |
彭艾琳 Pang, Irene |
|---|---|
| 論文名稱: |
套管基礎受反覆軸向載重下拉拔力衰減行為 Axial capacity degradation of jacket foundation under cyclic axial tension loads |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 離岸風力發電 、套管基礎 、打樁效應 、互制關係圖 、軸向拉力 |
| 外文關鍵詞: | Offshore wind turbine, jacket foundation, pile driving effect, interaction diagram, axial tension loads |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年全球暖化、氣候變遷及能源危機已成為世界各地共同面臨之問題,各國積極投入再生能源的發展,藉以達到節能減碳之目標。台灣海峽被譽為世界最適合建置離岸風場之潛力場址之一。因此,離岸風力發電成為台灣近年積極發展再生能源的重點項目。基於台灣水深條件、鋼結構製造及海事自主施工等考量下,潛力場址申請開發商多擬採用之支撐結構基礎型式為大口徑單樁基礎與套管基礎。離岸風機上部結構受到風、波、流等週期性環境載重,環境載重造成之側向作用力經由上部結構傳遞至套管基礎之下部結構時,在迎風面與背風面分別對樁基礎產生軸向拉力及壓力。樁基礎長期受到反覆軸向作用力,造成樁基礎承載力的衰減,將影響風機運轉之支撐結構穩定性。關於樁基礎受反覆軸向拉力下之行為反應之相關研究成果十分稀少,因此目前較常用於工程界評估樁基礎受反覆載重作用下承載力衰減之分析方法為互制關係圖法。現有的互制關係圖並未納入樁基礎尺寸條件與土壤條件的考量,於互制關係圖中僅能得知樁基礎於反覆受力條件下容許作用次數且無法得知樁基礎於反覆軸向拉力下之承載力。
有鑑於此,本研究以有限元素分析軟體ABAQUS建立樁-土互制系統數值模型進行樁基礎受軸向拉力下之穩定性分析,以Jardine and Standing (2000)現地樁載重試驗成果作為案例分析對象,將打樁效應納入數值模型考量並對基樁承載力之影響進行探討。針對樁基礎靜態穩定性分析,於數值模型中透過基樁管壁膨脹方法模擬打樁過程中基樁擠壓樁周土壤,增加樁土間正向力以提高基樁承載力,達到現地試驗成果;針對樁基礎反覆穩定性分析,數值模型以土壤體應變衰減公式代入土壤體應變衰減模型(VSDM),模擬樁周土壤受到反覆剪力作用後,土壤體應變隨著反覆作用次數增加而減小,使樁周正向應力降低造成樁身摩擦力隨之衰減,達到反覆軸向拉力作用下基樁承載力隨著反覆作用次數增加而衰減之目的。
本研究利用9組樁基礎尺寸之數值模型進行參數分析,產出考量土壤條件與樁基礎尺寸之互制關係圖,並搭配德國樁基礎設計規範[EAP(2012)]建議方法計算不同反覆拉力條件作用N次後之反覆拉拔力,分別探討樁徑、樁長、土壤緊密程度(固定樁基礎尺寸條件)、平均反覆拉力比及反覆拉力振幅比對基樁承載力之影響。由分析結果得知,樁徑、樁長與土壤緊密程度的增加使樁基礎承載力提高;反覆拉力振幅比相較於平均反覆拉力比,樁基礎反覆拉拔力比隨反覆作用次數衰減幅度顯著。
In recent years, Taiwan has been actively developing renewable energy and offshore wind power is one of the key projects in Taiwan's Renewable energy development. Jacket foundation which has high stiffness and is well suited for the deeper water depth in Taiwan. The piles of jacket foundation are subjected to highly cyclic tension and compressive loading and the design of jacket type foundation for offshore wind turbine is mainly controlled by axial tension loading. Cyclic axial tension loads may cause degradation of pullout capacity due to the reduction of pile shaft resistance. This study presents a numerical model to simulate the behavior of pile under cyclic axial tension loads. The numerical model calibration was done by using the data from the field test results of Jardine and Standing(2000). The results from the field test and predictions made by the calibrated model based on the effect of pile driving and the calculation method of soil volume strain degradation were generally in agreement and simulated axial capacity degradation of piles under cyclic tension loads. This thesis used the methods of EAP (2012) along with the interaction diagram produced from this numerical method to evaluate the axial capacity of pile under cyclic axial tension loads and the result of this analysis showed that the increase of pile diameter, pile length and relative density of sand increased the pile capacity. The ratio of axial cyclic load amplitude had a more significant effect on the pile capacity which decreased with the number of loading cycles compared to the ratio of mean axial cyclic load.
Achmus, M., and Müller, M. (2010). “Evaluation of pile capacity approaches with respect to piles for wind energy foundations in the North Sea,” 2nd International Symposium on Frontiers in Offshore Geotechnics, University of Western Australia Perth, pp. 8-10.
Abdel-Rahman, K., Achmus, M.and Kuo, Y.-S. (2014). “A numerical model for the simulation of pile capacity degradation under cyclic axial loading,” Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2014), Delft, The Netherlands, Vol. 2. pp.1219-1224,
Achmus, M., Lemke, K., Abdel-Rahman, K., and Kuo, Y.-S. (2015). “Numerical approach for the derivation of interaction diagrams for piles under cyclic axial loading,” Proceedings of the 25th International OffshoreandPolar Engineering Conference (ISOPE), pp. 755-760.
Allersma, H. G. B. (1988). “Optical Analysis of StressandStrain Around the Trip of a Penetrating Probe,” Proc. First International Symposium on Penetration Testing. Orlando, FL , pp. 615-620.
Åstedt, B., Weiner, L., and Holm, G. (1992). “Increase in bearing capacity with time for friction piles in siltandsand,” Proceedings of Nordic geotechnical meeting , pp. 411-416.
Atkins Consultants Ltd. (2000). “Cyclic degradation of offshore piles,” HSE Offshore Technology Report OTO 2000 013. HealthandSafety Executive, London.
Augustesen, A. H. (2006). “The effects of time on soil behaviourandpile capacity,” Doctoral dissertation, Aalborg University, Department of Civil Engineering.
American Petroleum Institute (API) (1993). “API Recommended practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design”, 20th Edition.
American Petroleum Institute (API). (2011). “Geotechnicalandfoundation design considerations,” ANSI/API recommended practice 2GEO.
Axelsson, G (2000). “Long Term Setup of Piles in Sand,” PhD dissertation. Royal Institute of Technology, Stockholm, Sweden.
Bowman, ETandSoga, K (2003) “Creep, ageingandmicrostructural change in dense granular materials,” SoilsandFoundation, Vol. 43, No. 4. pp. 107-117.
Bowman, E. T., and Soga, K. (2005). “Mechanisms of setup of displacement piles in sand: laboratory creep tests,” Canadian Geotechnical Journal, Vol. 42, No. 5, pp. 1391-1407.
Brucy, F., Meunier, J., and Nauroy, J. F. (1991). “Behavior of pile plug in sandy soils duringandafter driving,” Offshore Technology Conference, Offshore Technology Conference.
BSH (2015). Guidance for use of the BSH standard “Minimum requirements concerning the constructive design of offshore structures within the Exclusive Economic Zone (EEZ)” Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency of Germany).
Bullock, P. J., Schmertmann, J. H., McVay, M. C., and Townsend, F. C. (2005). “Side shear setup. I: Test piles driven in Florida,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 3, pp. 292-300.
Clausen, C. J. F., Aas, P. M., and Karlsrud, K. (2005). “Bearing capacity of driven piles in sand, the NGI approach,” Proceedings of Proceedings of International Symposium. on Frontiers in Offshore Geotechnics, Perth, pp. 574-580.
Chong, F. (1988). “Density changes of sand on cone penetration resistance,” Proceedings, 1st International Symposium on Penetration Testing, ISOPT-l, AA Balkema, Rotterdam, the Netherlands, Vol. 2, pp. 707-714.
Chow, F., and Jardine, R. J. (1996). “Investigations into the behaviour of displacement piles for offshore foundations,” International Journal of Rock Mechanic sand, Mining Sciences and Geomechanics Abstracts, Vol. 7, No. 33, pp. 319A-320A.
Chow, F. C., Jardine, R. J., Brucy, F., and Nauroy, J. F. (1998). “Effects of time on capacity of pipe piles in dense marine sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 3, pp. 254-264.
DeJong, J. T., Randolph, M. F., and White, D. J. (2003). “Interface load transfer degradation during cyclic loading: a microscale investigation,” Soils and foundations, Vol. 43, No. 4, pp. 81-93.
Doherty, P., and Gavin, K. (2011). “Shaft capacity of open-ended piles in clay,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 11, pp. 1090-1102.
Gavin, K., Igoe, D., and Doherty, P. (2011). “Piles for offshore wind turbines: a state-of-the-art review.” Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, Vol. 164, No. 4, pp. 245-256.
Gavin, K. G., Igoe, D. J. P., and Kirwan, L. (2013). “The effect of ageing on the axial capacity of piles in sand,” Proceedings of the Institution of Civil Engineers–Geotechnical Engineering, Vol. 166, No. 2, pp. 122-130.
Global Wind Energy Council (GWEC) (2016). “The Global Wind Energy Outlook 2016”.
Gudavalli, S. R., Safaqah, O., and Seo, H. (2013). “Effect of soil plugging on axial capacity of open-ended pipe piles in sands,” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering , pp. 1487-1490.
Health and Safety Executive(HSE) (2000). “ Cyclic degradation of offshore piles.”
Heerema, E. P. (1978). “Predicting pile driveability: Heather as an illustration of the" friction fatigue" theory,” SPE European Petroleum Conference, Society of Petroleum Engineers.
Hettler, A. (1982). “Approximation formulae for piles under tension,” Proc., IUTAM, Conf. on DeformationandFailure of Granular Materials , pp. 603-608.
Henke, S., and Grabe, J. (2008). “Numerical investigation of soil plugging inside open-ended piles with respect to the installation method,” Acta Geotechnica, Vol. 3, No. 3, pp. 215-223.
Henke, S., and Grabe, J. (2013). “Field measurements regarding the influence of the installation method on soil plugging in tubular piles,” Acta Geotechnica, Vol. 8, No. 3, pp. 335-352.
Henke, S., and Bienen, B. (2013). “Centrifuge tests investigating the influence of pile cross-section on pile driving resistance of open-ended piles,” International Journal of Physical Modelling in Geotechnics, Vol. 13, No. 2, pp. 50-62.
Jardine, R. J. (1998). “Interim report on cyclic loading modelandsynthetic soil profile for HSE funded pile cyclic loading study,” Imperial College Consultants (ICON).
Jardine, R., Chow, F., Overy, R., and Standing, J. (2005). ICP design methods for driven piles in sandsandclays, London, Thomas Telford.
Jardine, R. J., Standing, J. R., and Chow, F. C. (2006). “Some observations of the effects of time on the capacity of piles driven in sand,” Géotechnique, Vol. 56, No. 4, pp. 227-244.
Karlsrud, K. (2014). “Ultimate shaft frictionandload-displacement response of axially loaded piles in clay based on instrumented pile tests,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 12.
Karlsrud, K., Jensen, T. G., Lied, E. K. W., Nowacki, F., and Simonsen, A. S. (2014). “Significant ageing effects for axially loaded piles in sandandclay verified by new field load tests,” Offshore Technology Conference, Offshore Technology Conference.
Kirsch, F., and Richter, T. (2010). “Ein analytisch-empirischer Ansatz zur Bestimmung der Tragfähigkeit und der Verformungen von axial zyklisch belasteten Pfählen,” Workshop Offshore-Gründungen von Windkraftanlagen, Karlsruhe, No. 172, pp. 151-164.
Kolk, H.J., Shaffei, K.A.and Baajens, A.E. (2005) “Axial load tests on pipe piles in very dense sands at Ras Tanajib,” Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics, Perth, pp. 765–770.
Komurka, V. E., Wagner, A. B., and Edil, T. B. (2003). Estimating soil/pile set-up, Report No. 03-05, Wisconsin Highway Research Program.
Lee, W., Kim, D., Salgado, R., and Zaheer, M. (2010). “Setup of driven piles in layered soil,” Soils and Foundations, Vol. 50, No. 5, pp. 585-598.
Lehane, B. (1992). “Experimental investigations of pile behaviour using instrumented field piles,” Doctoral dissertation, University of London.
Lehane, B. M., Jardine, R. J., Bond, A. J., and Frank, R. (1993). “Mechanisms of shaft friction in sand from instrumented pile tests,” Journal of Geotechnical Engineering, Vol. 119, No. 1, pp. 19-35.
Lehane, B. M., and Randolph, M. F. (2002). “Evaluation of a minimum base resistance for driven pipe piles in siliceous sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 3, pp. 198-205.
Lehane, B. M., Schneider, J. A., and Xu, X. (2005). “The UWA-05 method for prediction of axial capacity of driven piles in sand,” Frontiers In Offshore Geotechnics (ISFOG) , pp. 683-689.
Lüking, J., and Kempfert, H. G. (2013). “Plugging effect of open-ended displacement piles,” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, pp 2363-2366.
McVay, M. C., Schmertmann, J., Townsend, F., and Bullock, P. (1999). “Pile friction freeze: a fieldandlaboratory study,” Florida Department of Transportation, Vol 1, pp. 192-195.
O'Neil, M. W., and Reese, L. C. (1973). “Behavior of bored piles in Beaumont clay,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 99, No. SM7.
Paik, K. H., and Lee, S. R. (1993). “Behavior of soil plugs in open‐ended model piles driven into sands,” Marine Georesources and Geotechnology, Vol. 11, No. 4, pp. 353-373.
Paikowsky, S. G. (1989). “A static evaluation of soil plug behavior with application to the pile plugging problem,” Doctoral dissertation, Massachusetts Institute of Technology.
Paik, K., Salgado, R., Lee, J., and Kim, B. (2003). “Behavior of open-and closed-ended piles driven into sands,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 4, pp. 296-306.
Paik, K., and Salgado, R. (2003). “Effect of pile installation method on pipe pile behavior in sands,” Geotechnical Testing Journal, Vol. 27, No. 1, pp. 78-88.
Paik, K., and Salgado, R. (2003). “Determination of bearing capacity of open-ended piles in sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 1, pp. 46-57.
Paikowsky, S. G., Hajduk, E. L., and Hart, L. J. (2005). “Comparison Between ModelandFull Scale Pile Capacity Gain in the Boston Area,” Advances in Deep Foundations, pp. 1-16.
Randolph, M. F., Jeer, H. A., Khorshid, M. S., and Hyden, A. M. (1996). “Fieldandlaboratory data from pile load tests in calcareous soil,” Offshore Technology Conference. Offshore Technology Conference.
Randolph, M., Gourvenec, S., White, D., and Cassidy, M. (2011). Offshore geotechnical engineering ,Vol. 2, New York: Spon Press.
Rimoy, S., Silva, M., Jardine, R., Yang, Z. X., Zhu, B. T., and Tsuha, C. H. C. (2015). “Field and model investigations into the influence of age on axial capacity of displacement piles in silica sands,” Géotechnique, Vol. 65, No. 7, pp. 576-589.
Robinsky, E. I., and Morrison, C. F. (1964). “Sand displacement and compaction around model friction piles,” Canadian Geotechnical Journal, Vol. 1, No. 2, pp. 81-93.
Schmertmann, J. H. (1991). “The mechanical aging of soils.,” Journal of Geotechnical Engineering, Vol. 117, No. 9, pp.1288-1330.
Seed, H. B., and Reese, L. C. (1955). “The action of soft clay along friction piles,” American Society of Civil Engineers Transactions.
Silva, M., Foray, P., Rimoy, S., Jardine, R., Tshusa, C. and Yang, Z. (2013). “Influence of cyclic axial loads on the behaviour of piles driven in sand,” Proceedings of the 18th International Conference on Soil MechanicsandGeotechnical Engineering, Paris, France, pp. 81–84.
Silver, L., B. Seed (1971). “Volume Changes in Sands during Cyclic Loading”. Proceedings ofthe American Society of Civil Engineers, Vol. 97, No. SM9, pp. 1171-1182.
Soderberg, L. O. (1962). “Consolidation theory applied to foundation pile time effects,” Geotechnique, Vol. 12, No. 3, pp. 217-225.
White, D. J., and Bolton, M. D. (2004). “Displacement and strain paths during plane-strain model pile installation in sand,” Géotechnique, Vol. 54, No. 6, pp. 375-397.
White, D. J., and Lehane, B. M. (2004). “Friction fatigue on displacement piles in sand,” Géotechnique, Vol. 54, No. 10, pp. 645-658.
White, D. J., Schneider, J. A., and Lehane, B. M. (2005). “The influence of effective area ratio on shaft friction of displacement piles in sand,” Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics (ISFOG), TaylorandFrancis, pp. 741-748.
White, D. J. (2005). “A general framework for shaft resistance on displacement piles in sand,” Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics (ISFOG), TaylorandFrancis, pp. 697-704.
Woodward, R. J., Gardner, W. S., and Greer, D. M. (1972). “Drilled pier foundations,” McGraw-Hill, New York.
Yu, F., and Yang, J. (2011). “Improved evaluation of interface friction on steel pipe pile in sand,” Journal of Performance of Constructed Facilities, Vol. 26, No. 2, pp.170-179.
Zhang, L. M., and Wang, H. (2009). “Field study of construction effects in jackedanddriven steel H-piles,” Géotechnique, Vol. 59, No. 1, pp. 63-69.
郭玉樹、黃迪瑩、曾姿郡、林啓聖 (2014),「離岸風機套管式基礎地工設計考量」,海洋及水下科技季刊,103年12月號,Vol. 24, No. 4, pp.25-32.
黃迪瑩 (2014),「無凝聚性土壤中樁基礎受反覆拉力下之行為研究」,碩士論文,國立成功大學水利及海洋工程系,台南。
郭玉樹、Martin Achmus、曾玉修、鍾智印、Khalid Abdel-Rahman (2015),「互制關係圖應用於離岸風機套管基礎受反覆軸向拉力下之穩定性分析」, 第37屆海洋工程研討會, 台中, pp.703-708.
曾玉修 (2016),「套管樁基礎於軸向拉力下之變形行為」,碩士論文,國立成功大學水利及海洋工程系,台南。
郭玉樹(2017),「離岸風機套管基礎變形分析方法研(1/2)」,中興工程顧問股份有限公司成果報告書。
校內:2028-12-31公開