簡易檢索 / 詳目顯示

研究生: 陳嘉宏
Chen, Chia-Hung
論文名稱: 以Silicalite-1分子篩限域鎳金屬觸媒應用於二氧化碳選擇性氫化
Turning Product Selectivity by Encapsulating Nickel in Silicalite-1 for CO2 Hydrogenation
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: 二氧化碳氫化鎳觸媒分子篩RWGS
外文關鍵詞: Carbon dioxide, Hydrogenation, Nickel, Reverse water-gas shift, Silica
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相對於貴金屬觸媒,鎳金屬觸媒是二氧化碳氫化非常好的選擇,因為其價格低廉與良好的活性,而鎳觸媒在二氧化碳氫化最主要的產物眾所周知是甲烷,並且有一氧化碳與水的副產物,但由於甲烷的使用多只用於燃料,想將甲烷轉化是非常的困難的,而一氧化碳能作為其他碳氫化合物的前驅物,可利用價值較高。因此如何去調控一氧化碳與甲烷的選擇性,是本研究主要的探討方向,本研究通過不同鎳擔載二氧化矽觸媒的反應性測試,發現透過Silicalite-1 分子篩限域鎳原子的方式,Ni0.2@S-1-red在二氧化碳氫化中,在常壓450℃與GHSV= 6000 mL/gCat/h反應條件時達到了>99%的一氧化碳選擇性及良好的一氧化碳空時產率(9.7 mol/gNi/h),二氧化碳轉化率趨近於平衡轉化率,並且其選擇性不會受到氣體流速與溫度影響而改變,這由於Ni0.2@S-1-red 含有強Ni-O-Si作用與高分散的Niδ+和Ni0並且有著適洽的二氧化碳與一氧化碳吸附能力,使其有此反應性。而透過化學吸附性質與原味紅外線光譜鑑定,可得知HCO2 和 CO*為主要的反應中間產物,而不同觸媒對一氧化碳的吸附能力與CO* 是否會繼續氫化為反應產物選擇性的關鍵。本研究以XRD、BET、HRTEM、ICP、XAS、XPS、pyridine-IR、in-situ DRIFTS等鑑定方法進行觸媒探討與反應之可行性。

    The catalytic hydrogenation of CO2 to CO via the reverse water-gas shift (RWGS) was investigated using Ni/SiO2-based catalysts. Among the array of catalysts tested, the Ni/SiO2 catalyst derived from the reduction of Silicalite-1-encapsulated, ligand-protected Ni2+ (Ni0.2@S-1-red) exhibited superior performance. This catalyst demonstrated a CO2 conversion rate approaching the equilibrium conversion of RWGS, a selectivity for CO exceeding 99%, and a high space time yield of CO (9.7 mol/gNi/h). The exceptional outcomes observed can be attributed to several factors, namely the highly dispersed Ni0 and Niδ+ species and the presence of bridging oxygen of the Ni-O-Si structure, of which CO2 can be adsorbed moderately. The moderately bonded CO2 on Ni0.2@S-1-red allows for the efficient desorption of its reduced intermediate, i.e. *CO, resulting in the generation of gaseous CO at a rapid rate, consequently preventing its deep hydrogenation to CH4.

    摘要 I Abstract II 誌謝 IX 表目錄 XV 圖目錄 XVI 第一章 前言 1 1-1 引言 1 1-2 研究動機與設計 2 第二章 文獻回顧 3 2-1 二氧化碳氫化反應 3 2-2 RWGS和甲烷化反應 5 2-3 鎳觸媒在二氧化碳氫化的應用 8 2-3-1甲烷化反應 8 2-3-2 RWGS 9 2-4 分子篩限域金屬觸媒 11 第三章 實驗 13 3-1 藥品與實驗設備 13 3-2 觸媒之合成與製備 15 3-2-1 商用擔體之前處理與含浸法合成鎳觸媒 15 3-2-2 分子篩限域鎳觸媒合成 15 3-2-3 鎳矽酸鹽觸媒合成 16 3-2-4 觸媒之命名方式 17 3-3 二氧化碳氫化之反應性測試 18 3-4 產物定性與定量分析 19 3-5 氣相層析儀(Gas chromatograph, GC) 20 3-6 X光繞射儀 (X-ray diffractometer, XRD) 22 3-7 感應耦合電漿原子發射光譜儀 (ICP-OES) 25 3-8 比表面積及孔徑分析儀(BET) 27 3-9 全自動化學吸脫附儀 30 3-9-1 氫氣程溫還原反應(H2-TPR) 30 3-9-2 一氧化碳程序升溫脫附(CO-TPD) 31 3-9-3 二氧化碳程序升溫脫附(CO2-TPD) 31 3-10 高解析穿透式電子顯微鏡(High resolution transmission electron microscope, HR-TEM) 32 3-11 X光吸收光譜(X-ray absorption spectroscopy, XAS) 34 3-12 X射線光電子能譜分析(X-ray photoelectron spectroscopy, XPS) 36 3-13 紅外光譜儀 37 3-13-1 傅立葉轉換紅外光譜儀(Fourier-transform infrared spectroscopy, FTIR) 37 3-13-2 漫反射式傅立葉變換紅外光譜儀(Diffuse Reflectance Infrared Fourier Transform Spectroscopy, DRIFTS) 38 第四章 結果與討論 39 4-1 觸媒XRD繞射結果 39 4-2 X射線吸收光譜 41 4-3 觸媒之高解析穿透式電子顯微鏡成像 47 4-4 X射線光電子能譜 49 4-5 觸媒比表面積與物理性質 52 4-6 氫氣程溫還原 54 4-7 一氧化碳吸附分析 56 4-7-1 一氧化碳程溫脫附 56 4-7-2 CO-DRIFTS 57 4-8 二氧化碳吸附與表面酸性分析 58 4-8-1 二氧化碳程溫脫附 58 4-8-2 Py-FTIR 59 4-9 觸媒活性測試 61 4-9-1 不同合成手法之觸媒反應性探討 61 4-9-2 不同鎳含量之分子篩限域觸媒對二氧化碳氫化之活性 63 4-9-3 不同溫度對觸媒反應性影響 64 4-9-4 不同GHSV影響 65 4-9-5 觸媒100小時穩定性測試 66 4-9-6 觸媒一氧化碳空時產率與二氧化碳吸附關係 68 4-10 近年發表之RWGS觸媒反應 69 4-11 觸媒in-situ DRIFTS 光譜分析 70 4-12 反應機制 76 第五章 結論 77 參考資料 78

    1. Babin A, Vaneeckhaute C, Iliuta MC (2021) Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review. Biomass and Bioenergy 146:105968
    2. Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 39:426-443
    3. Iliuta MC (2017) CO2 sorbents for sorption-enhanced steam reforming. In: Advances in Chemical Engineering, vol 51. Elsevier, pp 97-205
    4. Sahraei OAZ, Gao K, Iliuta MC (2020) Application of industrial solid wastes in catalyst and chemical sorbent development for hydrogen/syngas production by conventional and intensified steam reforming. In:New dimensions in production and utilization of hydrogen. Elsevier, pp 21-55
    5. Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Pan X, Christopher P (2017) Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nature chemistry 9 (2):120-127
    6. Zhang X, Han S, Zhu B, Zhang G, Li X, Gao Y, Wu Z, Yang B, Liu Y, Baaziz W (2020) Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nature Catalysis 3 (4):411-417
    7. Cored J, García-Ortiz A, Iborra S, Climent MJ, Liu L, Chuang C-H, Chan T-S, Escudero C, Concepción P, Corma A (2019) Hydrothermal synthesis of ruthenium nanoparticles with a metallic core and a ruthenium carbide shell for low-temperature activation of CO2 to methane. Journal of the American Chemical Society 141 (49):19304-19311
    8. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355 (6331):1296-1299
    9. Li Z, Wang J, Qu Y, Liu H, Tang C, Miao S, Feng Z, An H, Li C (2017) Highly selective conversion of carbon dioxide to lower olefins. ACS Catalysis 7 (12):8544-8548
    10. Wang Y, Tan L, Tan M, Zhang P, Fang Y, Yoneyama Y, Yang G, Tsubaki N (2018) Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics. ACS Catalysis 9 (2):895-901
    11. Saeidi S, Najari S, Hessel V, Wilson K, Keil FJ, Concepción P, Suib SL, Rodrigues AE (2021) Recent advances in CO2 hydrogenation to value-added products—Current challenges and future directions. Progress in Energy and Combustion Science 85:100905
    12. Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J (2017) Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews 46 (5):1358-1426
    13. Chen Y, Wei J, Duyar MS, Ordomsky VV, Khodakov AY, Liu J (2021) Carbon-based catalysts for Fischer–Tropsch synthesis. Chemical Society Reviews 50 (4):2337-2366
    14. Bahmanpour AM, Signorile M, Kröcher O (2021) Recent progress in syngas production via catalytic CO2 hydrogenation reaction. Applied Catalysis B: Environmental 295:120319
    15. Abild-Pedersen F, Andersson MP (2007) CO adsorption energies on metals with correction for high coordination adsorption sites–A density functional study. Surface Science 601 (7):1747-1753
    16. Xu H, Xu C-Q, Cheng D, Li J (2017) Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. Catalysis Science & Technology 7 (24):5860-5871
    17. Wang L-X, Wang L, Xiao F-S (2021) Tuning product selectivity in CO2 hydrogenation over metal-based catalysts. Chemical Science 12 (44):14660-14673
    18. Zhang J, Sewell CD, Huang H, Lin Z (2021) Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO2 Valorization (Adv. Energy Mater. 47/2021). Advanced Energy Materials 11 (47):2170186
    19. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews 40 (7):3703
    20. Bian Z, Chan YM, Yu Y, Kawi S (2020) Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study. Catalysis Today 347:31-38
    21. Jia X, Zhang X, Rui N, Hu X, Liu C-j (2019) Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Applied Catalysis B: Environmental 244:159-169
    22. Aziz M, Jalil A, Triwahyono S, Ahmad A (2015) CO2 methanation over heterogeneous catalysts: Recent progress and future prospects. Green Chemistry 17 (5):2647-2663
    23. Zhi G, Guo X, Wang Y, Jin G, Guo X (2011) Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catalysis Communications 16 (1):56-59
    24. Guo M, Lu G (2014) The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts. Catalysis Communications 54:55-60
    25. Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society 139 (29):9739-9754
    26. Li D, Xu R, Wong RJ, Zhu X, Tian D, Jiang L, Guo Q, Bai H, Huang L, Liu W (2022) Suppressing byproduct formation for high selective CO2 reduction over optimized Ni/TiO2 based catalysts. Journal of Energy Chemistry 72:465-478
    27. Lin S, Wang Q, Li M, Hao Z, Pan Y, Han X, Chang X, Huang S, Li Z, Ma X (2022) Ni–Zn dual sites switch the CO2 hydrogenation selectivity via tuning of the d-band center. ACS Catalysis 12 (6):3346-3356
    28. Vogt C, Groeneveld E, Kamsma G, Nachtegaal M, Lu L, Kiely CJ, Berben PH, Meirer F, Weckhuysen BM (2018) Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nature Catalysis 1 (2):127-134
    29. Wang C, Guan E, Wang L, Chu X, Wu Z, Zhang J, Yang Z, Jiang Y, Zhang L, Meng X (2019) Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. Journal of the American Chemical Society 141 (21):8482-8488
    30. Wang L-X, Wang L, Xiao F-S (2021) Tuning product selectivity in CO2 hydrogenation over metal-based catalysts. Chemical Science 12 (44):14660-14673. doi:10.1039/d1sc03109k
    31. Liu Y, Li Z, Yu Q, Chen Y, Chai Z, Zhao G, Liu S, Cheong W-C, Pan Y, Zhang Q, Gu L, Zheng L, Wang Y, Lu Y, Wang D, Chen C, Peng Q, Liu Y, Liu L, Chen J, Li Y (2019) A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society 141 (23):9305-9311
    32. Liu Y, Chen Y, Gao Z, Zhang X, Zhang L, Wang M, Chen B, Diao Y, Li Y, Xiao D (2022) Embedding high loading and uniform Ni nanoparticles into silicalite-1 zeolite for dry reforming of methane. Applied Catalysis B: Environmental 307:121202
    33. 李加富, 张凯, 王宁, 孙启明 (2022) 分子筛限域单原子金属催化剂的研究进展. 高等学校化学学报
    34. Shang W, Gao M, Chai Y, Wu G, Guan N, Li L (2021) Stabilizing Isolated Rhodium Cations by MFI Zeolite for Heterogeneous Methanol Carbonylation. ACS Catalysis 11 (12):7249-7256
    35. Hsieh C-Y, Chen Y-Y, Lin Y-C (2018) Ga-substituted nanoscale HZSM-5 in methanol aromatization: the cooperative action of the Brønsted acid and the extra-framework Ga species. Industrial & Engineering Chemistry Research 57 (23):7742-7751
    36. Yamamoto T (2008) Assignment of pre‐edge peaks in K‐edge x‐ray absorption spectra of 3d transition metal compounds: Electric dipole or quadrupole? X‐Ray Spectrometry: An International Journal 37 (6):572-584
    37. Struis RP, Bachelin D, Ludwig C, Wokaun A (2009) Studying the formation of Ni3C from CO and metallic Ni at T= 265° C in situ using Ni K-Edge x-ray absorption spectroscopy. The Journal of Physical Chemistry C 113 (6):2443-2451
    38. Li C-C, Hsieh C-H, Lin Y-C (2022) Ni/SiO2 catalysts derived from carbothermal reduction of nickel phyllosilicate in the hydrogenation of levulinic acid to γ-valerolactone: The efficacy of nitrogen decoration. Molecular Catalysis 523:111720
    39. Zhang Y, Liu Q (2021) Nickel phyllosilicate derived Ni/SiO2 catalysts for CO2 methanation: Identifying effect of silanol group concentration. Journal of CO2 Utilization 50:101587
    40. Richard AR, Fan M (2017) Low-pressure hydrogenation of CO2 to CH3OH using Ni-In-Al/SiO2 catalyst synthesized via a phyllosilicate precursor. ACS Catalysis 7 (9):5679-5692
    41. Soghrati E, Ong TKC, Poh CK, Kawi S, Borgna A (2018) Zeolite–supported nickel phyllosilicate catalyst for CO hydrogenolysis of cyclic ethers and polyols. Applied Catalysis B: Environmental 235:130-142
    42. Lu Y, Guo D, Zhao Y, Moyo PS, Zhao Y, Wang S, Ma X (2021) Confined high dispersion of Ni nanoparticles derived from nickel phyllosilicate structure in silicalite-2 shell for dry reforming of methane with enhanced performance. Microporous and Mesoporous Materials 313:110842
    43. Wei L, Grénman H, Haije W, Kumar N, Aho A, Eränen K, Wei L, de Jong W (2021) Sub-nanometer ceria-promoted Ni13X zeolite catalyst for CO2 methanation. Applied Catalysis A: General 612:118012
    44. Lehmann T, Wolff T, Hamel C, Veit P, Garke B, Seidel-Morgenstern A (2012) Physico-chemical characterization of Ni/MCM-41 synthesized by a template ion exchange approach. Microporous and Mesoporous Materials 151:113-125
    45. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry 57 (4):603-619
    46. Che M, Cheng ZX, Louis C (1995) Nucleation and particle growth processes involved in the preparation of silica-supported nickel materials by a two-step procedure. Journal of the American Chemical Society 117 (7):2008-2018
    47. Li Z, Kathiraser Y, Kawi S (2015) Facile synthesis of high surface area yolk–shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem 7 (1):160-168
    48. Wang J, Fu Y, Kong W, Jin F, Bai J, Zhang J, Sun Y (2021) Design of a carbon-resistant Ni@S-2 reforming catalyst: Controllable Ni nanoparticles sandwiched in a peasecod-like structure. Applied Catalysis B: Environmental 282:119546
    49. Chatla A, Abu-Rub F, Prakash AV, Ibrahim G, Elbashir NO (2022) Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn. Fuel 308:122042
    50. Li K, Pei C, Li X, Chen S, Zhang X, Liu R, Gong J (2020) Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Applied Catalysis B: Environmental 264:118448
    51. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects 190 (3):261-274
    52. Emeis C (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of catalysis 141 (2):347-354
    53. Millet M-M, Algara-Siller G, Wrabetz S, Mazheika A, Girgsdies F, Teschner D, Seitz F, Tarasov A, Levchenko SV, Schlögl R, Frei E (2019) Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society 141 (6):2451-2461
    54. Rivera-Cárcamo C, Scarfiello C, García AB, Tison Y, Martinez H, Baaziz W, Ersen O, Le Berre C, Serp P (2021) Stabilization of Metal Single Atoms on Carbon and TiO2 Supports for CO2 Hydrogenation: The Importance of Regulating Charge Transfer. Advanced Materials Interfaces 8 (8):2001777
    55. Wang Y, Feng K, Tian J, Zhang J, Zhao B, Luo KH, Yan B (2022) Atomically Dispersed Zn-Stabilized Niδ+ Enabling Tunable Selectivity for CO2 Hydrogenation. ChemSusChem 15 (7):e202102439
    56. Chen H, Zhang Y, He Q, Zhang H, Xu S, He X, Ji H (2020) A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. Journal of Materials Chemistry A 8 (5):2364-2368
    57. Wang D, Yuan Z, Wu X, Xiong W, Ding J, Zhang Z, Huang W (2023) Ni Single Atoms Confined in Nitrogen-Doped Carbon Nanotubes for Active and Selective Hydrogenation of CO2 to CO. ACS Catalysis 13 (10):7132-7138
    58. Zhang C, Zhang R, Liu Y, Wu X, Wang H, Ge Q, Zhu X (2023) Blocking Methanation during Reverse Water Gas Shift Reaction on Ni/SiO2 Catalysts by Surface Ag. ChemCatChem 15 (3):e202201284
    59. Guo J, Wang Z, Li J, Wang Z (2022) In–Ni Intermetallic Compounds Derived from Layered Double Hydroxides as Efficient Catalysts toward the Reverse Water Gas Shift Reaction. ACS Catalysis 12 (7):4026-4036
    60. Liu H-X, Li S-Q, Wang W-W, Yu W-Z, Zhang W-J, Ma C, Jia C-J (2022) Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction. Nature Communications 13 (1):867
    61. Zhuang Y, Currie R, McAuley KB, Simakov DSA (2019) Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5wt% Ru-promoted Cu/ZnO/Al2O3 catalyst. Applied Catalysis A: General 575:74-86
    62. Zhou J, Gao Z, Xiang G, Zhai T, Liu Z, Zhao W, Liang X, Wang L (2022) Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nature Communications 13 (1)
    63. Li X, Lin J, Li L, Huang Y, Pan X, Collins SE, Ren Y, Su Y, Kang L, Liu X (2020) Controlling CO2 hydrogenation selectivity by metal‐supported electron transfer. Angewandte Chemie International Edition 59 (45):19983-19989
    64. Aziz M, Jalil A, Wongsakulphasatch S, Vo D-VN (2020) Understanding the role of surface basic sites of catalysts in CO2 activation in dry reforming of methane: a short review. Catalysis Science & Technology 10 (1):35-45
    65. Xu X, Liu L, Tong Y, Fang X, Xu J, Jiang D-e, Wang X (2021) Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catalysis 11 (9):5762-5775
    66. Wang K, Men Y, Liu S, Wang J, Li Y, Tang Y, Li Z, An W, Pan X, Li L (2021) Decoupling the size and support/metal loadings effect of Ni/SiO2 catalysts for CO2 methanation. Fuel 304:121388
    67. Zhang Z, Shen C, Sun K, Jia X, Ye J, Liu C-j (2022) Advances in Studies of Structural Effect of the Supported Ni Catalyst for CO2 Hydrogenation: From Nanoparticle to Single Atom Catalyst. Journal of Materials Chemistry A
    68. Yamano R, Ogo S, Nakano N, Higo T, Sekine Y (2023) Non-conventional low-temperature reverse water–gas shift reaction over highly dispersed Ru catalysts in an electric field. EES Catalysis
    69. Feng X, Wang Z, Mu L, Chen Z, Liang J, Xiao C (2022) The different evolution behaviors of carbonate-like species on Pt/CeO2 and Pt/Al2O3 by in situ DRIFTS-MS study. Catalysis Today 400:82-88
    70. Zhao H, Yu R, Ma S, Xu K, Chen Y, Jiang K, Fang Y, Zhu C, Liu X, Tang Y (2022) The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nature Catalysis 5 (9):818-831
    71. Xie Y, Chen J, Wu X, Wen J, Zhao R, Li Z, Tian G, Zhang Q, Ning P, Hao J (2022) Frustrated Lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts. ACS Catalysis 12 (17):10587-10602
    72. Li Y, Zhao Z, Lu W, Zhu H, Sun F, Mei B, Jiang Z, Lyu Y, Chen X, Guo L (2022) Single-atom Co-NC catalysts for high-efficiency reverse water-gas shift reaction. Applied Catalysis B: Environmental:122298
    73. Zhang T, Wang W, Gu F, Xu W, Zhang J, Li Z, Zhu T, Xu G, Zhong Z, Su F (2022) Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance. Applied Catalysis B: Environmental 312:121385
    74. Cerdá-Moreno C, Chica A, Keller S, Rautenberg C, Bentrup U (2020) Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS. Applied Catalysis B: Environmental 264:118546
    75. Cárdenas-Arenas A, Quindimil A, Davó-Quiñonero A, Bailón-García E, Lozano-Castelló D, De-La-Torre U, Pereda-Ayo B, González-Marcos JA, González-Velasco JR, Bueno-López A (2020) Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Applied Catalysis B: Environmental 265:118538
    76. Zhang F, Zhou W, Xiong X, Wang Y, Cheng K, Kang J, Zhang Q, Wang Y (2021) Selective hydrogenation of CO2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1. The Journal of Physical Chemistry C 125 (44):24429-24439
    77. Pu T, Chen J, Tu W, Xu J, Han Y-F, Wachs IE, Zhu M (2022) Dependency of CO2 methanation on the strong metal-support interaction for supported Ni/CeO2 catalysts. Journal of Catalysis 413:821-828

    無法下載圖示 校內:2028-07-01公開
    校外:2028-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE